• Title/Summary/Keyword: cubic phase

Search Result 451, Processing Time 0.025 seconds

NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

Study of Order-Disorder Phase Transition of $(Fe_{0.61}Ni_{0.39})_3V$V Alloy by Neutron Diffraction Method (중성자회절법을 이용한 $(Fe_{0.61}Ni_{0.39})_3V$ 합금의 규칙- 불규칙 상전이 연구)

  • 이정수;이창희
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • The order-disorder phase transition of (Fe/sub 0.61/Ni/sub 0.39/)₃V alloy that is annealed at various temperatures and time conditions was sty(lied with the examination of long-range order parameter(S) by using neutron diffraction method. As a result, the structure of the sample annealed at 680℃ for 94 h was not changed; that is, it existed iii perfect disordered state and showed face-centered cubic structure. Otherwise, samples which were annealed at temperature below 640℃ showed the value of long-range order parameter with 0 < S < 1 and phase transition into simple cubic structure partly. It was found that the annealed sample at 465℃ for 144 h is the most approximated to the thermal equilibrium state from the S-T/T/sub c/ related equation of Cowley.

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

A Phase Transformation Study on Amorphous Diopside ($CaMgSi_2O_6$) (비정질 투휘석($CaMgSi_2O_6$)에 대한 상변이 연구)

  • 김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • A phase transformation study on a synthetic amorphous diopside, $(Ca,Mg)SiO_3$has been carried out up to ∼30 GPa, and ∼$1000^{\circ}C$ using a diamond anvil cell and YAG laser heating system, respectively. A starting amorphous material shows a direct transition to cubic $(Ca,Mg)SiO_3$perovskite at high pressure, which contradicts to the crystalline diopside phase transformation sequence disproportionating into mixtures of the orthorhombic$ MgSiO_3$perovskite and the cubic $CaSiO_3$perovskite phases. This discrepancy might be due to the different starting materials as well as the temperature variations at each specific experiment performed. The present phase transfor mation sequence would modify the mineralogical assemblage in the Earth transition region and the lower mantle depending upon the pressure, temperature and the oxygen partial pressure.

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

Characteristics on EL Properties and Phase Transformation Caused by Artificial Defects on the ZnS:Cu Blue Phosphor for ACPEL (ACPEL용 ZnS:Cu 청색 형광체의 인위적 결함 형성에 따른 결정 상 변화 및 EL 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.406-409
    • /
    • 2004
  • A blue phosphor(ZnS:Cu) is manufactured by solid state reaction for ACPEL(AC powder EL). The effect of artificial defect on phosphor surface on the ZnO phase conversion and resulting luminescence have been studied. It was found that ZnS:Cu could converse to cubic phase more easily due to the formation of artificial defect on 1st fired phosphor by ball-milling process, resulting in improvement of luminescence of phosphor phosphors under the driven EL condition. We found out an optimized ball-mill condition through considering effect of each ball-mill conditions such as milling time and milling rpm on defect. Also we determined relationship between emission luminescence and phase of phosphor based on analyses of crystal structures of phosphors. A significant improvement above 30% was observed in electroluminescence by the artificial defect on ZnS:Cu phosphors compared to non-treated phosphors.

Study on the Luminescence Properties according to ZnS multi-phase (ZnS multi-phase에 따른 발광특성 연구)

  • 김광복;김용일;천희곤;조동율;구경완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was refined by the Rietveld program using X-ray diffraction data. The R-weighted pattern (R$\sub$wp/) of ZnS powder was 10.85%. The fraction of HCP phase was closely related with extra amount of H$_2$S gas. The lattice parameters and crystalline size were changed by the relative ratio of multi-phase. The luminescence property of ZnS:Cu, Al green phosphors prepared by conventional methods was good in the range of 91∼94% and 150∼190${\AA}$, respectively. According to the maximum entropy electron density(MEED) methods, any defects in (001) plane of cubic phase were not found. We suggest that both the Rietveld and maximum entropy density methods may be useful tools for studying luminescence mechanism of other phosphors materials.

  • PDF

Effects of the Columbite Precursors on Phase-Formation Characteristics, Microchemistry and Dielectric Properties of Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3$ Ceramics (Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3$계에서 Columbite Precursors의 화학적 특성이 상생성, 미세화학 및 유전특성에 미치는 영향)

  • 조성률;이규만;장현명
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.723-730
    • /
    • 1993
  • The mechanism of formation of perovskite phase and the dielectric properties of PZMN[Pb(Zn, Mg)1/3Nb2/3O3] ceramics were examined using two different types of the columbite precursors, (Mg, Zn)Nb2O6 (MZN) and MgNb2O6+ZnNb2O6 (MN+ZN). The formatin of perovskite phase in PbO+MN+ZN system is characterized by an initial rapid formation of Mg-rich perovskite phase, followed by a sluggish formation of Zn-rich perovskite phase. On the other hand, thepyrochlore/perovskite transformation in the PbO+MZN system proceeded uniformly with a spatial homogeneity. The degree of diffuseness of the rhombohedral/cubic phase transitionis higher in the PbO+MN+ZN system than in the PbO+MZN specimen, indicating a broadened compositional distributjion of the B-site catons (Nb+5, Zn+2, Mg+2) in the PbO+MN+ZN system.

  • PDF