• 제목/요약/키워드: crystallite

검색결과 371건 처리시간 0.026초

열처리에 의한 TiO2 미립자의 결정구조 변화 (The Change of Crystal Structure of TiO2 Fine Powders by Heat Treatment)

  • 김성종;장경환;진영철;정경락
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 1994
  • Anatase $TiO_2$ particles prepared by experiment were used to study the change of crystal structure by calcination temperature. The results were as follows. Crystallite size of anatase $TiO_2$ particles increased with calcination temperature. The rate of increasing the crystallite size of anatase $TiO_2$ particles was decreased below $700^{\circ}C$ and was markedly increased above $700^{\circ}C$. Unit cell volume of $TiO_2$ was expanded at low temperature and was contracted at high temperature. This result means that the growth of crystallite size was occured in the direction.

  • PDF

X 선(線) 회절법(回折法)에 의한 Tension Wood의 결정구조(結晶構造) 해석 (Crystal Structure of Tension Wood by X-ray Diffraction Method)

  • 이원용;김남훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권4호
    • /
    • pp.73-78
    • /
    • 1993
  • Crystal structure of tension, opposite and lateral wood of Platanus orientalis L. were analysed in some aspects of crystallinity index, crystallite size, d-spacing of (200) and (004), and integrated intensity ratios with X-ray diffraction method. Crystallinity index and crystallite width in tension wood appeared somewhat larger than opposite or lateral wood. However, d-spacing and integrated intensity ratios were nearly identical irrespective of tension, opposite, and lateral wood.

  • PDF

탄화규소 나노섬유의 제조 및 물성 (Preparation and Characterization of Silicon Carbide Nanofiber)

  • 신현익;송현종;김명수;임연수;이재춘
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.376-380
    • /
    • 2000
  • Carbon nanofibers with an average diameter of 100nm were reacted with SiO vapor generated from a mixture of Si and SiO2 to produce silicon carbide nanofibers at temperature ranging 1200∼1500$^{\circ}C$ under vacuum. The nanofiber reacted at 1200$^{\circ}C$ for two hours consisted of silicon carbide with an average crystallite size of 10-20nm, amorphous silica and a significant amount of unreacted carbon. The surface area of silicon carbide nanofiber, obtained after removal of amorphous silica and unreacted carbon from converted carbon nanofibers at 1200$^{\circ}C$, was as high as 150㎡/g. With increasing reaction temperature to 1500$^{\circ}C$, the surface area was decreased to 14㎡/g. Growth of SiC crystallite size with increasing conversion temperature of carbon nanofiber was confirmed from Scherrer formula using the (111) diffraction line and TEM images of converted carbon nanofibers.

  • PDF

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • 주동우;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF

Hot Press에 의한 마그네시아의 소결 (Sintering of Magnesia During Hot Pressing)

  • 오기동
    • 한국세라믹학회지
    • /
    • 제19권2호
    • /
    • pp.152-156
    • /
    • 1982
  • The behavior of magnesite during hot pressing is studied from 80$0^{\circ}C$ to 110$0^{\circ}C$ by Knoop hardness test, X-ray diffraction and electron microscopy. The growth of magnesia crystallite in magnesite is observed at 110$0^{\circ}C$ and crystallite size is about 2 microns. It is also observed that hot pressing showes enhanced sinterability comparing to ordinary pressure-less sintering. The magnesia body with 95 per cent of theoretical density is obtained by hot pressing at relatively low temperature such as 110$0^{\circ}C$.

  • PDF

제조방법에 따른 Y-PSZ 분말의 응집 및 소결특성 (The Characteristic of Agglomerate and Sintering of Y-PSZ Powders Prepared by Different Processes)

  • 이종국;김환;황규홍
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.9-16
    • /
    • 1985
  • Agglomeration of Y-PSZ and its related properties were studied. The ultrafine $ZrO_2$ powder containg 3 mol% $Y_2O_3$ was prepared by 1) coprecipitation method b) hot petroleum drying method c) sol-gel method and the characteristics of calcined powders and the microstructures of sintered body were observed. Powder prepared by the coprecipitation method was about 125$\AA$ in crystallite size and 0.1~1.0${\mu}{\textrm}{m}$ of intra-agglomerate pore size when calcined at $600^{\circ}C$ for 1 hour. because of small crystallite size and weak agglo merate strength resultant densification of sintered body was high. But above the temperature of 130$0^{\circ}C$ efflorescent phenomena due to anions attached to powder surface was observed. Powder prepared by hot petroleum drying method was 65$\AA$ in crystallite size and 1~10${\mu}{\textrm}{m}$ of intraagglome-rate pore size and it was observed that the agglemerates were formed during the calcining process. In this case despite of small crystallite size the rate of sintering was slow and the existing lenticular interagglomerate pore was not eliminated to the final stage of sintering. Powder prepared by sol-gel method showed solid agglomertes due to rapi dhydrolysis reaction. In this powder which involves strong solid agglomerates overall sintering rate was determined by the sintering between the agglomerates and therefore sinterability of powders made by sol-gel method was very poor.

  • PDF

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Physico-mechanical, AC-conductivity and microstructural properties of FeCl3 doped HPMC polymer films

  • Prakash, Y.;Somashekarappa, H.;Manjunath, A.;Mahadevaiah, Mahadevaiah;Somashekar, R.
    • Advances in materials Research
    • /
    • 제2권1호
    • /
    • pp.37-49
    • /
    • 2013
  • The transition metal salt doped solid polymer electrolyte [TSPE] were prepared with HPMC as a host polymer. The virgin and doped films were prepared by solution-casting method and investigated using wide angle X-ray scattering method. Micro structural parameters like lattice strain (g%), stacking/twin faults, the average number of unit cells counted in a direction perpendicular to the Bragg's plane (hkl) spacing of (hkl) planes dhkl, crystallite size Ds, distortion width, standard deviation were determined by whole pattern powder fitting (WPPF) method, which is an extension of single order method. It is found that the crystallite size decreases with the increase in the content of $FeCl_3$. This decrease is due to increase in localized breaking of polymer network which also accounts for the amorphous nature of the material. The filler inorganic salt $FeCl_3$ acts as plasticizer. FTIR study also confirms and justifies the interaction between the polymer and in-organic salt in the matrix. Physical properties like mechanical stability and Ac conductivity in these films are in conformity with the X-ray results.

연신비와 열고정 온도에 따른 Partially Oriented Polyester Yarn(POY)의 구조변화와 물성 (The Change of Crystal Structure and Physical Properties of Partially Oriented Polyester Yarn(POY) on the Draw Ratio and Heat Setting Temperature)

  • 박명수;윤종호
    • 한국염색가공학회지
    • /
    • 제12권2호
    • /
    • pp.103-110
    • /
    • 2000
  • To examine the physical properties of POY through the microstructure control, the crystal structure such as the crystallinity, the crystallite size, the orientation, the shrinkage, the tensile properties, and the thermal stress of POY(80/48, SD) were examined at different draw ratios and annealing temperatures. From the examination following conclusions were obtained : 1. The crystallinity was more effected by the heat setting temperature than by the draw ratio. The increasing rate was greatest at the heat setting temperature range of $170~190^\circ{C}$. 2. The crystallite size perpendicular to the fiber axis was more effected by the annealing temperature at lower draw ratios. On the other hand, the crystal and amorphous orientations were more effected by the heat setting at higher draw ratios. 3. The boiling shrinkage did not change significantly, but the total shrinkage showed 13% at the draw ratio 1.9 and the heat setting temperature $170^\circ{C}$. 4. The maximum thermal stress increased with increasing the draw ratio and decreasing the heat setting temperature in the temperature range of $170~210^\circ{C}$. At the draw ratio 1.9 and the heat setting temperature $170^\circ{C}$, the maximum thermal stress found was 1.1gf/d. 5. In the heat setting temperature above $170^\circ{C}$ after the drawing, the crystallinity, the crystallite size, the orientation, and the strength increased with increasing temperature, but the shrinkage and the maximum thermal stress decreased with increasing temperature.

  • PDF