• Title/Summary/Keyword: crystal orientation

Search Result 563, Processing Time 0.029 seconds

TEXTURE AND RELATED PHENOMENA OF ELECTRODEPOSITS

  • Lee, D.N.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.317-330
    • /
    • 1999
  • The texture of electrodeposits changes from the orientation that places the lowest energy crystal facets parallel to the substrate under a condition of low ion concentration adjacent to the deposit, to the orientation that places the higher energy crystal facets parallel to the substrate as the ion concentration adjacent to the deposit increases. The electrodeposits have peculiar surface morphologies and microstructures depending on their textures, which in turn may affect their mechanical properties even when they are obtained in a similar electrolysis condition. The electrodeposits undergo recrystallization, when annealed. The recrystallization texture may be different from the deposition texture. These phenomena have been discussed.

  • PDF

A Study on the Orientation Dependence of Plastic Deformation in NiAl Single Crystals by FEA (FEA를 이용한 NiAl 단결정 소성 변형의 결정 방향 의존에 관한 연구)

  • Yang, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.268-273
    • /
    • 2004
  • Deformation of single crystals was studied using finite element analysis to investigate the orientation dependence of plastic deformation observed in NiAl single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Orientation dependence of material behavior in NiAl single crystals was studied by rotating loading directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was ranged in a quite wide scope depending on the misalignment from 'hard' orientation. As the compressed axis set closer to 'hard' orientation, the maximum nominal compressed stress rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.

  • PDF

A Study of Deformation and Orientation Dependent Behavior in Single Crystals

  • Yang Chulho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • Deformations of single crystals were studied using finite element analysis to investigate the localized modes and the orientation dependence of plastic deformation observed in single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Localized bands such as shear and kink were studied and the material and geometric characteristics that influence the formation of such localized bands were investigated. Orientation dependence of material behavior in NiAl single crystals was studied by rotating slip directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was widely ranged depending on the misalignment from 'hard' orientation. As the compression axis was set closer to 'hard' orientation, the maximum nominal compressed stress was rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.

Fast Switching Polymer-Stabilized Bend Nematic Devices

  • Kim, Sang-Hwa;Chien, Liang-Chy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.194-195
    • /
    • 2002
  • We report a fast-switching polymer-stabilized bend nematic (PSBN) device. The morphology study reveal a templated polymer networks captures the orientation of the field deformed nematic host.

  • PDF

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF

Spinel Single Crystal Growth by Verneuil Process (Verneuil법에 의한 Spinel 단결정 성장)

  • 유영기;최익서;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.155-160
    • /
    • 1990
  • Al-rich Mg-Al spinel single crystals were grown by Verneuil process using oxygen and hydrogen flame. Spinel single crystals were grown in chemical compositions from MgO : Al2O3 mole ratio 1 : 1 to 1 : 3. Mole ratio 1 : 1 was hard to be grown and mole ratio 1 : 2.5 and 1 : 3 were grown well. Selecting well-grown mole ratio 1 : 3, seeds were prepared having [100], [110] and [111] orientation respectively. Growth rate were highest in [100] orientation and lowest in [111] orientation.

  • PDF

Prediction of Necking in Tensile Test using Crystal Plasticity Model and Damage Model (결정소성학 모델과 손상 모델을 이용한 박판소재의 네킹 예측)

  • Kim, Jong-Bong;Hong, Seung-Hyun;Yoon, Jeong-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.818-823
    • /
    • 2012
  • In order to predict necking behaviour of aluminium sheets, a crystal plasticity model is introduced in the finite element analysis of tensile test. Due to the computational limits of time and memory, only a small part of tensile specimen is subjected to the analysis. Grains having different orientations are subjected to numerical tensile tests and each grain is discretized by many elements. In order to predict the sudden drop of load carrying capacity after necking, a well-known Cockcroft-Latham damage model is introduced. The mismatch of grain orientation causes stress concentration at several points and damage is evolved at these points. This phenomenon is similar to void nucleation. In the same way, void growth and void coalescence behaviours are well predicted in the analysis. For the comparison of prediction capability of necking, same model is subjected to finite element analysis using uniform material properties of polycrystal with and without damage. As a result, it is shown that the crystal plasticity model can be used in prediction of necking and fracture behavior of materials accurately.

Mechanism of Orientation of Liquid Crystal Molecules for Polarized UV-exposed Polyimide Alignment Layers (폴리애미드 배향막의 편광 자외선 조사에 따른 액정 배향 메카니즘)

  • 김일형;김욱수;하기룡
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.209-217
    • /
    • 2002
  • We studied the mechanism of orientation of polyimide molecules which were irradiated by polarized UU (PUV) using polarized Fourier transform infrared (FT-IR) spectroscopy and ultraviolet (UV) spectroscopy, According to the measured UV spectra, we found PI films mainly absorb UV light less than 350 nm wavelength, therefore, UV light less than 360 nm induces photochemical reaction of PI. PUV irradiation of PI films caused decrease of all peak intensities in the FT-IR spectra. except the newly formed broad peak at $3244 cm^{-1}$, due to degradation of the PI molecules. The remaining PI molecules after photo-degradation showed predominantly perpendicular molecular orientation to the irradiated PUV polarization direction, due to the preferential degradation of PI molecules parallel to irradiated PUV polarization direction. However the rubbing of PI films induced reorientation of the PI molecules parallel to the rubbing direction. We also investigated the alignment of the liquid crystal by rubbing or PUV irradiation. Liquid crystals align perpendicular to the PUV polarization direction and parallel to the rubbing direction.

Development of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid) (Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 개발)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • This purpose of this study is to enhance the hydrolysis of poly (butylene succinate-co-L-lactate) (PBSL) and poly [(R) -3-hydroxybutylate] (PHB), to develop materials with advanced medical absorbability and environmental suitability. The first method involves increasing the bioabsorbability of poly (glycolic acid) (PGA) in the core of the fibrous complex, while the second method involves making a complex fiber containing PBSL and PHB in the outer layer for improving environmental degradability Improvement in the hydrolysis of PBSL and PHB due to glycolic acid occurs by hydrolytic behavior of PGA. The drawing supporting the resulting PBSL/PGA fiber was executed at $65^{\circ}C$, where the orientation is well arranged in crystal form. Obtaining a PHB/PGA complex fiber in the proper crystal orientation at $50^{\circ}C$ was not possible since the arranged crystal orientation was only identified in drawings from temperatures above $50^{\circ}C$. Also, it is necessary to execute a smooth surface to achieve an on-line drawing since unevenness occurs in the fibrous surface from an in-line drawing.

Characteristics Comparison of Prepared Films According to Influence of Adsorption Inhibitor in the Condition of Deposition (PVD증착용 흡착인히비터의 영향에 따른 제작막의 특성 비교)

  • 이찬식;윤용섭;권식철;김기준;이명훈
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.67-67
    • /
    • 2001
  • The structure zone model has been used to provide an overview of the relationship between the microstructure of the films deposited by PVD and the most prominent deposition condition.s. B.AMovchan and AV.Demchishin have proposed it firstls such model. They concluded that the general features of the resulting structures could be correlated into three zones depending on $T/T_m$. Here T m is the melting point of the coating material and T is the substrate temperature in kelvines. Zone 1 ($T/Tm_) is dominated by tapered macrograins with domed tops, zone 2 ($O.3) by columnar grains with denser boundaries and zone 3 ($T/T_m>O.5$) by equiaxed grains formed by recrystallization. J.AThomton has extended this model to include the effect of the sputtering gas pressure and found a fourth zone termed zone T(transition zone) consisting of a dense array of poorly defined fibrous grains. R.Messier found that the zone I-T boundary (fourth zone of Thorton) varies in a fashion similar to the film bias potential as a function of gas pressure. However, there has not nearly enough model for explaining the change in morphology with crystal orientation of the films. The structure zone model only provide an information about the morphology of the deposited film. In general, the nucleation and growth mechanism for granular and fine structure of the deposited films are very complex in an PVD technique because the morphology and orientation depend not only on the substrate temperature but also on the energy of deposition of the atoms or ions, the kinetic mechanism between metal atoms and argon or nitrogen gas, and even on the presence of impurities. In order to clarify these relationship, AI and Mg thin films were prepared on SPCC steel substrates by PVD techniques. The influence of gas pressures and bias voltages on their crystal orientation and morphology of the prepared films were investigated by SEM and XRD, respectively. And the effect of crystal orientation and morphology of the prepared films on corrosion resistance was estimated by measuring polarization curves in 3% NaCI solution.

  • PDF