• Title/Summary/Keyword: crystal form

Search Result 677, Processing Time 0.023 seconds

Charge-carrier Transport Properties of Organic Photoconductor by Photo-isomerization of Liquid Crystal with Azo Group (Azo기를 가지는 액정의 광 이성화에 따른 유기 광전도체의 carrier 수송 특성)

  • Lee, Bong;Sung, Jung-Hee;Moon, Chang-Kwon
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.473-477
    • /
    • 1999
  • Xerographic properties of double-layer photoconductor doped with 4-butyl-4'-methoxyazobenzene (BMAB) as charge-carrier transport material were investigated. BMAB can undergo reversible trans-cis isomerization by light with appropriate wavelength. In the results of measured surface voltage properties for photoconductor doped with BMAB, TNF: BMAB(4-wt%) sample with trans form showed the lowest dark decay, the lowest residual voltage, and the highest sensitivity among cis form. The trans isomer of BMAB has ordering orientation because the molecule possesses a rodlike shape, while the cis isomer has random orientation due to its bent shape. Therefore the molecular arrangement of trans form enhanced charge-carrier transport mobility.

  • PDF

APPLICATION STUDY OF CHEMOINFOMETRICAL NEAR-INFRARED SPECTROSCOPY IN PHARMACEUTICAL INDUSTRY

  • Otsuka, Makoto;Kato, Fumie;Matsuda, Yoshihisa
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2111-2111
    • /
    • 2001
  • A chemoinfometrical method for evaluating the quantitative determination of crystallinity one polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the and compared with the conventional powder X-ray diffraction method was performed. [Method] The pPure a and g forms of indomethacin (IMC) were prepared by reportedusing published methods. Six kinds of standard samples obtained by physically mixing of a and g forms. After the powder X-ray diffraction profiles of samples have been measured, the intensity values were normalized to against the intensity of silicon powder as the as an external standard. The calibration curves for quantification of crystal content were based upon the total relative intensity of four diffraction peaks from of the form g crystal. FT-NIR spectra of six calibration sample sets were recorded 5 times with the NIR spectrometer (BRAN+LUEBBE). Chemoinfometric analysis was performed on the NIR spectral data sets by applying the principal component regression (PCR). [Results] The relation between the actual and predicted polymorphic contents of form g IMC measured using by the X-ray diffraction method shows a good straight linen linear relation., and it has slope of 0.023, an intercept of 0.131 and a correlation coefficient of 0.986. PCR analyses wereis was performed based on normalized NIR spectra sets offer standard samples of known content of IMC g form. IMC. A calibration equation was determined to minimize the root mean square error of the predictionthe prediction. Figure 1 shows a plot of the calibration data obtained by NIR method between the actual and predicted contents of form g IMC. The predicted values were reproducible and had a smaller standard deviation. Figure 2 shows that the plot for the predicted transformation rate (%) of form a IMC to form g as measured by X-ray diffractomeoy against to those as measured by NIR method. The plot has a slope of 1.296, an intercept of 1,109, and a correlation coefficient of 0.992. The line represents a satisfactory correlation between the two predicted values of form g IMC content. Thus NIR spectroscopy is an effective method for the evaluation to the pharmaceutical products of quantitative of polymorph.

  • PDF

A study on the thermal oxidation process of bulk AlN single crystal grown by PVT (PVT 법으로 성장 된 bulk AlN 단결정의 열 산화 공정에 관한 연구)

  • Kang, Hyo Sang;Kang, Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.168-173
    • /
    • 2020
  • To analyze and describe the behavior and mechanisms occurring in the thermal oxidation process of AlN, bulk AlN single crystals were thermally treated with different temperatures. As a result, it was confirmed that full-scale oxidation of bulk AlN and growth of Al-oxide occurred from the temperature of 800℃, which confirmed that the weight% of O elements tended to increase while the N elements decreased with increasing the temperature. In the case of thermal treatment at 900℃, the grown Al-oxides were merged with neighboring Al-oxides and began to form α-Al2O3 poly-crystals. During thermal treatment at the temperature of 1000℃, hexagonal pyramidal shaped poly-crystalline α-Al2O3 was clearly observed. Through the X-ray diffraction pattern analysis, the changes of surface crystal structure according to the temperature of bulk AlN were investigated in detail.

Crystal Structure and Tautomerism Study of the Mono-protonated Metformin Salt

  • Wei, Xiaodan;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Xia;Li, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3495-3501
    • /
    • 2014
  • A novel crystal, the mono-protonated metformin acetate (1), was obtained and characterized by elemental analysis, IR spectroscopy and X-ray crystallography. It was found that one of the imino group in the metformin cation was protonated along with the proton transfer from the secondary amino group to the other imino group. Its crystal structure was then compared with the previously reported diprotonated metformin oxalate (2). The difference between them is that the mono-protonated metformin cations can be linked by hydrogen bonding to form dimers while the diprotonated metformin cations cannot. Both of them are stabilized by intermolecular hydrogen bonds to assemble a 3-D supermolecular structure. The four potential tautomer of the mono-protonated metformin cation (tautomers 1a, 1b, 1c and 1d) were optimized and their single point energies were calculated by Density Functional Theory (DFT) B3LYP method based on the Polarized Continuum Model (PCM) in water, which shows that the most likely existed tautomer in human cells is the same in the crystal structure. Based on the optimized structure, their Wiberg bond orders, Natural Population Analysis (NPA) atomic charges, molecular electrostatic potential (MEP) maps were calculated to analyze their electronic structures, which were then compared with the corresponding values of the diprotonated metformin cation (cation 2) and the neutral metformin (compound 3). Finally, the possible tautomeric mechanism of the mono-protonated metformin cation was discussed based on the observed phenomena.

The Stabilization of Liquid Crystal Emulsions by Acrylamide Copolymers (Acrylamide Copolymers에 의한 Liquid Crystal Emulsions의 안정성에 관한 연구)

  • Ryu, Hai-Il;Jang, Nak-Han;Jeon, Youn-Seok;Lee, Myeong-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2005-2014
    • /
    • 2009
  • There are several methods to fabricate Polymer Dispersed Liquid Crystal(PDLC) films. One of them, so-called Nematic Curvilinear Aligned Phase(NCAP) film, is based on emulsion technology. To produce NCAP systems various water soluble polymers, such as partially hydrolyzed polyvinylalcohol(PVA) and polyvinyl pyrrolidone(PVP), which can form stable emulsion of liquid crystal(LC) without any stabilizers were used. In this work, we studied the dependence of emulsion stability on nature and composition of copolymers composed of water-soluble and water-insoluble moiety. We found that interfacial surface tension depends on the composition of comonomer, the copolymer concentration in the water, and the nature of hydrophobic chain. The Acrylamide -styrene(AA-ST) copolymer showed the lowest interfacial surface tension among the tested copolymers at the same concentration. Since the interfacial surface tension decreases with increasing the compatibility of copolymer with LC phase the AA-ST copolymer has the best compatibility with LC molecules. It is believed that molecules adsorbing easily on the surface of LC droplets allows the LC emulsion system to be more stable.

The Crystal Structure of a Sulfur Sorption Complex of the Dehydrated Partially $Co^{2+}$-Exchanged Zeolite A

  • 염영훈;송성환;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.823-826
    • /
    • 1995
  • The crystal structure of a sulfur sorption complex of the dehydrated partially Co2+ exchanged zeolite A (a=12.058(2) Å) has been determined by single-crystal X-ray techniques. The crystal structure was solved and refined in cubic space group Pm3m at 21(1) ℃. Ion Exchange with aqueous 0.05 M Co(NO3)2 was done by the static method. The crystal of Na4Co4-A was dehydrated at 380 ℃ and 2 × 10-6 Torr for 2 days, followed by exposure to about 100 Torr of sulfur at 330 ℃ for 72 h. Full matrix least-squares refinement converged to R1=0.084 and Rw=0.074 with 102 reflections for which I > 3σ(I). Crystallographic analysis shows that 2.8 Co2+ ions and 4 Na+ ions per unit cell occupy 6-ring sites on the threefold axes. 1.2 Co2+ ions occupy the 8-ring sites on fourfold axes. 2.8 Co2+ ions at Co(1) are recessed 0.66 Å into the large cavity and 4 Na+ ion at Na(1) are recessed 0.77 Å into the sodalite cavity from the (111) plane of O(3)'s. Approximately 16 sulfur atoms were sorbed per unit cell. Two S8 rings, each in a butterfly form, are found in the large cavity. The bond length between S and its adjacent S is 2.27(3) Å. The distance between 6-ring Co2+ ion and its adjacent sulfur is 2.53 (2) Å and that between 8-ring Co2+ ions and its adjacent sulfur is 2.72(9) Å. The angles of S-S'-S and S'-S-S'/ in octasulfur rings are 119.0(2)°and 113.0(2)°, respectively.

Crystal Structure of Dehydrated Partially Ag$^+$-Exchanged Zeolite A, Ag$_{4.6}Na_{7.4}$-A, Treated with Hydrogen at 350${^{\circ}C}$

  • Kim Yang;Seff Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.202-206
    • /
    • 1985
  • The crystal structure of The crystal structure of $Ag^+$-Exchanged Zeolite A, $Ag_{4.6}Na_{7.4}-A$, dehydrated, treated with $H_2$, and evacuated, all at $350^{\circ}C$, has been determined by single crystal x-ray diffraction methods in the cubic space group Pm3m at $24(1)^{\circ}C;$ a = $12.208(2)\AA.$ The structure was refined to the final error indices R1 = 0.088 and R2 (weighted) = 0.069 using 194 independent reflections for which II_0$ > $3{\sigma}(I_0)$. On threefold axes near the centers of 6-oxygen rings, $7.4 Na^+$ ions and $0.6 Ag^+$ ions are found. Two non-equivalent 8-ring $Ag^+$ ions are found off the 8-ring planes, each containing about $0.6 Ag^+$ ions. Three non-equivalent Ag atom positions are found in the large cavity, each containing about 0.6 Ag atoms. This crystallographic analysis may be interpreted to indicate that $0.6 (Ag_6)^{3+}$ clusters are present in each large cavity. This cluster may be viewed as a nearly linear trisilver molecule $(Ag_3)^0$ (bond lengths, 2.92 and 2.94 $\AA;$ angle, $153^{\circ})$ stabilized by the coordination of each atom to a Ag^+$ ion at 3.30, 3.33, and 3.43 $\AA$, respectively. In addition, one of the silver atoms approaches all of the 0(1) oxygens of a 4-ring at $2.76\AA.$ Altogether $7.4 Na^+$ ions, $1.8 Ag^+$ ions, and 1.8 Ag atoms are located per unit cell. The remaining $1.0 Ag^+$ ion has been reduced and has migrated out of the zeolite framework to form silver crystallites on the surface of the zeolite single crystal.

Two Crystal Structures of the Vacuum-Dehydrated Fully $Ag^+$-Exchanged Zeolite X ($Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 결정구조)

  • Jang, Se Bok;Park, Sang Yun;Song, Seong Hwan;Jeong, Mi Suk;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.474-482
    • /
    • 1996
  • Two crystal structures of the vacuum dehydrated $Ag^+$-exchanged zeolite X have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)$^{\circ}C$ (a=24.922(1)${\AA}$ and a=24.901(1)${\AA}$, respectively). Each crystal was ion exchanged in flowing streams of aqueous $AgNO_3$ for three days. The first crystal was dehydrated at 300$^{\circ}C$ and $2{\times}10^{-6$torr for two days. The second crystal was similarly dehydrated at 350$^{\circ}C$. Their structures were refined to the final error indices, $R_1=0.095\;and\;R_2=0.092$ with 227 reflections, and $R_1=0.096\;and\;R_2=0.087$ with 334 reflections, respectively, for which I > 3${\sigma}$(I). In the first crystal, Ag species are found at five different crystallographic sites: sixteen $Ag^+$ ions fill the site I, the center of the double 6-ring, thirty-two Ag0 atoms fill the I' site in the sodalite cavities opposite double six-rings, seventeen $Ag^+$ ions lie at the 32-fold site II' inside the sodalite cavity at the single six-oxygen ring in the supercage, fifteen Ag+ ions lie at the 32-fold site II, in the supercage, and the remaining twelve $Ag^+$ ions lie at site III' in the supercage at a little off two-fold axes. In the second crystal, all Ag species are located similarly as crystal 1; 16 at site I, 28 at site I', 16 at site II, 16 at site II', 6 at site III and 6 at site III'. Total 88 silver species were found per unit cell. The remaining four Ag atoms were migrated out of the zeolite framework to form small silver crystallites on the surface of the zeolite single crystal. In the first structure, the numbers of Ag atoms per unit cell are approximately 32.0 and these may form tetrahedral $Ag_4$ clusters at the centers of the sodalite cavities. The probable four-atom cluster is stabilized by coordination to two $Ag^+$ ions. The Ag-Ag distance in the cluster, ca. 3.05 ${\AA}$, is a little longer than 2.89 ${\AA}$, Ag-Ag distance in silver metal. At least two six-ring $Ag^+$ ions on sodalite cavity (site II') must necessarily approach this cluster and this cluster may be viewed as a distorted octahedral silver cluster, (Ag6)2+.

  • PDF

Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology

  • Han, Pei-pei;Geng, Wen-ji;Li, Meng-nan;Jia, Shi-ru;Yin, Ji-long;Xue, Run-ze
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1311-1322
    • /
    • 2021
  • Microbially induced calcium carbonate precipitation (MICP) has recently become an intelligent and environmentally friendly method for repairing cracks in concrete. To improve on this ability of microbial materials concrete repair, we applied random mutagenesis and optimization of mineralization conditions to improve the quantity and crystal form of microbially precipitated calcium carbonate. Sporosarcina pasteurii ATCC 11859 was used as the starting strain to obtain the mutant with high urease activity by atmospheric and room temperature plasma (ARTP) mutagenesis. Next, we investigated the optimal biomineralization conditions and precipitation crystal form using Plackett-Burman experimental design and response surface methodology (RSM). Biomineralization with 0.73 mol/l calcium chloride, 45 g/l urea, reaction temperature of 45℃, and reaction time of 22 h, significantly increased the amount of precipitated calcium carbonate, which was deposited in the form of calcite crystals. Finally, the repair of concrete using the optimized biomineralization process was evaluated. A comparison of water absorption and adhesion of concrete specimens before and after repairs showed that concrete cracks and surface defects could be efficiently repaired. This study provides a new method to engineer biocementing material for concrete repair.

The Crystal Structure of Rubidium Hydrogen Carbonate ($RbHCO_3$) (炭酸水素루비듐의 結晶構造)

  • Kim Moon Il
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 1969
  • The crystal structure of rubidium hydrogen carbonate has been determined by single crystal X-ray diffraction method. the crystals are monoclinic with a = 15.05 $\AA$, b = 5.83 $\AA$, c = 4.02 $\AA$, and $\beta$ = $107^{\circ}.$ There are four chemical units per unit cell and the space-group was fixed as $C2-C^3_2$. Patterson and trial-and-error methods gave the approximate structure and its refinements were made by two-dimentional Fourier summation. The Co3 group is planar with tshhe C-O distances of 1.32 $\AA$, 1.32 $\AA$, and 1.33 $\AA$ within experimental error and the two $CO_3$ groups are linked together to form a complex anion [$H_2C_2O_6$] with the O-H${\cdot}{\cdot}{\cdot}$O distance, 2.53 $\AA.$ Two molecules of $RbHCO_3$ make the dimer structure with two hydrogen bonds. The values of reliability factor for $F_{(hol)}$, $F_{(hko)}$and $F_{(okl)}$are 0.15, 0.15 and 0.17 respectively. Each rubidium ion has eight oxygen neighbours with the Rb-O distances of 2.84~3.11 $\AA.$.

  • PDF