• Title/Summary/Keyword: cryptography

Search Result 972, Processing Time 0.032 seconds

ECC based Authentication Scheme for Securing Data Contents over Open Wireless Network Systems

  • Caytiles, Ronnie D.;Park, Byungjoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Multimedia contents have been increasingly available over the Internet as wireless networks systems are continuously growing popular. Unlimited access from various users has led to unauthorized access of third parties or adversaries. This paper deals with the implementation of elliptic curve cryptography (ECC) based user authentication for securing multimedia contents over the Internet. The ECC technique has been incorporated with the advanced encryption standard (AES) algorithm to ensure the complexity of the proposed authentication scheme and to guarantee authenticity of multimedia services.

Review Of Some Cryptographic Algorithms In Cloud Computing

  • Alharbi, Mawaddah Fouad;Aldosari, Fahd;Alharbi, Nawaf Fouad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.41-50
    • /
    • 2021
  • Cloud computing is one of the most expanding technologies nowadays; it offers many benefits that make it more cost-effective and more reliable in the business. This paper highlights the various benefits of cloud computing and discusses different cryptography algorithms being used to secure communications in cloud computing environments. Moreover, this thesis aims to propose some improvements to enhance the security and safety of cloud computing technologies.

A Brif Survey of Zero-Knowledge Proofs

  • Shin, Hyungong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.4 no.2
    • /
    • pp.39-54
    • /
    • 1994
  • In cryptography, the notion of zero-knowledge is important. It is also related to complexity theory. In this paper we briefly survey the zero-knowledge proofs in the literature. 1987 Maathematics Subject Classification: 69D56, 69E30, 69F21, Keywords and phrases: interactive proofs, zero-kniwledge, cryptography, complexity theiry.

Encryption Algorithm Technique for Device's key Protect in M2M environment (M2M 환경의 디바이스 키 보호를 위한 암호 알고리즘 응용 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.343-351
    • /
    • 2015
  • With the diverse services of the current M2M environment being expanded to the organizations, the corporations, and the daily lives, the possibility of the occurrence of the vulnerabilities of the security of the related technologies have become an issue. In order to solve such a problem of the vulnerability of the security, this thesis proposes the technique for applying the cryptography algorithm for the protection of the device key of the M2M environment. The proposed technique was based on the elliptic curve cryptography Through the key exchange and the signature exchange in the beginning, the security session was created. And the white box cipher was applied to the encryption that creates the white box table using the security session key. Application results cipher algorithm, Elliptic Curve Cryptography provides a lightweight mutual authentication, a session key for protecting the communication session and a conventional white-box cipher algorithm and was guaranteed the session key used to encrypt protected in different ways. The proposed protocol has secure advantages against Data modulation and exposure, MITM(Man-in-the-middle attack), Data forgery and Manipulation attack.

Single Trace Side Channel Analysis on NTRUEncrypt Implementation (NTRUEncrypt에 대한 단일 파형 기반 전력 분석)

  • An, Soojung;Kim, Suhri;Jin, Sunghyun;Kim, HanBit;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1089-1098
    • /
    • 2018
  • As the development of quantum computers becomes visible, the researches on post-quantum cryptography to alternate the present cryptography system have actively pursued. To substitute RSA and Elliptic Curve Cryptosystem, post-quantum cryptography must also consider side channel resistance in implementation. In this paper, we propose a side channel analysis on NTRU, based on the implementation made public in the NIST standardization. Unlike the previous analysis which exploits a thousands of traces, the proposed attack can recover the private key using a single power consumption trace. Our attack not only reduces the complexity of the attack but also gives more possibility to analyze a practical public key cryptosystem. Furthermore, we suggested the countermeasure against our attacks. Our countermeasure is much more efficient than existing implementation.

Secure Routing with Time-Space Cryptography for Mobile Ad-Hoc Networks (이동 애드혹 망을 위한 시공간 방식의 보안 라우팅 프로토콜)

  • Joe, In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the design and performance of a secure routing protocol with time-space cryptography for mobile ad-hoc networks. The proposed time-space scheme works in the time domain for key distribution between source and destination as well as in the space domain for intrusion detection along the route between them. For data authentication, it relies on the symmetric key cryptography due to high efficiency and a secret key is distributed using a time difference from the source to the destination. Also, a one-way hash chain is formed on a hop-by-hop basis to prevent a compromised node or an intruder from manipulating the routing information. In order to evaluate the performance of our routing protocol, we compare it with the existing AODV protocol by simulation under the same conditions. The proposed protocol has been validated using the ns-2 network simulator with wireless and mobility extensions.

An Energy-Efficient Access Control Scheme forWireless Sensor Networks based on Elliptic Curve Cryptography

  • Le, Xuan Hung;Lee, Sung-Young;Butun, Ismail;Khalid, Murad;Sankar, Ravi;Kim, Miso Hyoung-Il;Han, Man-Hyung;Lee, Young-Koo;Lee, Hee-Jo
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.599-606
    • /
    • 2009
  • For many mission-critical related wireless sensor network applications such as military and homeland security, user's access restriction is necessary to be enforced by access control mechanisms for different access rights. Public key-based access control schemes are more attractive than symmetric-key based approaches due to high scalability, low memory requirement, easy key-addition/revocation for a new node, and no key predistribution requirement. Although Wang et al. recently introduced a promising access control scheme based on elliptic curve cryptography (ECC), it is still burdensome for sensors and has several security limitations (it does not provide mutual authentication and is strictly vulnerable to denial-of-service (DoS) attacks). This paper presents an energy-efficient access control scheme based on ECC to overcome these problems and more importantly to provide dominant energy-efficiency. Through analysis and simulation based evaluations, we show that the proposed scheme overcomes the security problems and has far better energy-efficiency compared to current scheme proposed byWang et al.

Research on efficient HW/SW co-design method of light-weight cryptography using GEZEL (경량화 암호의 GEZEL을 이용한 효율적인 하드웨어/소프트웨어 통합 설계 기법에 대한 연구)

  • Kim, Sung-Gon;Kim, Hyun-Min;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.593-605
    • /
    • 2014
  • In this paper, we propose the efficient HW/SW co-design method of light-weight cryptography such as HIGHT, PRESENT and PRINTcipher using GEZEL. At first the symmetric cryptographic algorithms were designed using the GEZEL language which is efficiently used for HW/SW co-design. And for the improvement of performance the HW optimization theory such as unfolding, retiming and so forth were adapted to the cryptographic HW module conducted by FSMD. Also, the operation modes of those algorithms were implemented using C language in 8051 microprocessor, it can be compatible to various platforms. For providing reliable communication between HW/SW and preventing the time delay the improved handshake protocol was chosen for enhancing the performance of the connection between HW/SW. The improved protocol can process the communication-core and cryptography-core on the HW in parallel so that the messages can be transmitted to SW after HW operation and received from SW during encryption operation.

A Secure Data Processing Using ID-Based Key Cryptography in Mobile Cloud Computing (모바일 클라우드 컴퓨팅 환경에서 ID-기반 키 암호화를 이용한 안전한 데이터 처리 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.3-8
    • /
    • 2015
  • Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.

An Implementation of Supersingular Isogeny Diffie-Hellman and Its Application to Mobile Security Product (초특이 아이소제니 Diffie-Hellman의 구현 및 모바일 보안 제품에서의 응용)

  • Yoon, Kisoon;Lee, Jun Yeong;Kim, Suhri;Kwon, Jihoon;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • There has been increasing interest from NIST and other companies in studying post-quantum cryptography in order to resist against quantum computers. Multivariate polynomial based, code based, lattice based, hash based digital signature, and isogeny based cryptosystems are one of the main categories in post quantum cryptography. Among these categories, isogeny based cryptosystem is known to have shortest key length. In this paper, we implemented Supersingular Isogeny Diffie-Hellman (SIDH) protocol efficiently on low-end mobile device. Considering the device's specification, we select supersingular curve on 523 bit prime field, and generate efficient isogeny computation tree. Our implementation of SIDH module is targeted for 32bit environment.