• Title/Summary/Keyword: cryogenic storage

Search Result 143, Processing Time 0.022 seconds

Sampling and Cryogenic Pulverization and Storage of Environmental Samples and Improvement of Operating Procedures in National Environmental Specimen Bank (국가환경시료은행 시료 채취, 분쇄, 저장과 개선방안 고찰)

  • Lee, Jangho;Lee, Jongchun;Kim, Myungjin;Han, Areum;Lee, Eugene;Bade, Rabindra;Kim, Minsung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.823-839
    • /
    • 2012
  • Environmental Specimen Banks (ESBs) are playing pivotal role in monitoring the effect of environmental pollution on the ecosystem based on the retrospective analysis of the representative samples collected regularly and stored in cryogenic condition. In Korea, National Environmental Specimen Bank (NESB) was established in 2009 and the standard operating procedures (SOPs) for sampling, and cryogenic milling and storage had been prepared during 2007-2010. Since then, the tentative SOPs for the seven kinds of specimens (shoots of Red Pine (Pinus densiflora) and Korean Pine (Pinus koraiensis), leaves of Mongolian Oak (Quercus mongolica) and Zelkova Tree (Zelkova serrata), eggs of Feral Pigeon (Columba livia var. domestica), muscles and organs of Common Carp (Cyprinus carpio), and Freshwater Bivalve (Unio (Nodularia) douglasiae)) have been put to test in the field and laboratory as well against the practicality and feasibility. The SOPs were improved by reflecting the findings from the research and the following discussion regarding the selection of specimen (Feral Pigeon suffering from a control management), sample size (a problem of decreasing number of sampling trees related to increasing sampling time) and period (a problem related to a bud growth), and sampling methods etc.. In addition, barcoding system for the management of the specimen information, and monitoring system of the cryogenic storage to regulate the optimum temperature and the liquid nitrogen level were also developed for the efficient and effective control of the samples. Lastly, the safety guide and emergency protocol were augmented to guarantee a safe work environment with the cryogenic facility. These improvements of the SOPs are expected to contribute to more stable operation of the NESB.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Investigation on the Self-Pressurization in Cryogenic Liquid Storage System (극저온 유체 저장 시스템의 압력 증가에 대한 연구)

  • Seo, Man-Su;Kim, Young-Kwon;In, Se-Hwan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.142-147
    • /
    • 2008
  • This paper reports an analysis of self-pressurization in a closed cryogenic liquid storage system and its comparison with experimental data using liquid nitrogen. Partial equilibrium model(PEM), revised thermodynamic analysis of homogeneous model, has been applied for the pressurization in a closed tank. The vapor and liquid bulk temperature and the liquid-vapor interface temperature are separately calculated as their own representative values in this analysis. The analysis results of the partial equilibrium model are compared with the experimental data and other preceding homogeneous temperature models for validation.

  • PDF

A Study of the Sol-Air Temperature for the Calculation of Insulation in Cryogenic Storage Tank (저온용 저장탱크의 보온계산을 위한 Sol-Air 온도에 관한 연구)

  • Son, Byung-Jin;Maeng, Joo-Sung;Hong, Sung-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 1985
  • In this thesis, the Sol-Air temperature distribution for the side-wall of a cylindrical cryogenic storage tank made of nonhomogenious composite layer was studied, in order to calculate the thermal load by Newton's cooling law, when the solar radiation was applied upon the side wall. In the analysis, the atmospheric slab was assumed to be horizontal and infinitely large, and the Sol -Air temperature, which was found by the Net- Radiation method considering the longwave radiation wi th surroundings, was used for boundary condition. Energy equation and boundary conditions were normalized by the defined reference- temperature, and solved. The solutions were developed by the Fourier cosine series. Then, the Sol-Air temperature distribution for the side-wall of LNG storage tank was calculated.

  • PDF

Performance of a 5 L Liquid Hydrogen Storage Vessel (5 L급 액체수소 저장용기의 성능특성 연구)

  • KARNG, SARNG WOO;GARCEAU, NATHANIEL;LIM, CHANG MU;BAIK, JONG HOON;KIM, SEO YOUNG;OH, IN-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.

Numerical Analysis of Behavior of Ground Near LNG Tank Foundation Under Scenario of LNG Leakage (LNG 탱크에서 천연가스 유출시 얕은 기초 주변 지반거동의 수치해석적 분석)

  • Kim, Jeongsoo;Kim, Youngseok;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Recently, the use of natural gas has steadily increased due to its economical advantage and increased demand of clean energy uses. Accordingly, construction of LNG storage tanks is also increased. Secure of the stability of LNG tanks storage requires high technology as natural gas is stored in a liquid state for efficiency of storage. When a cryogenic LNG fluid leaks on ground due to a defect in LNG tank, damage is expected to be significant. Many researchers evaluated the critical and negative effects of LNG leakage, but there is limited research on the effect of cryogenic fluid leakage on the ground supporting LNG tanks. Therefore, in this study, the freezing expansion of the ground during cryogenic LNG fluid leakage was evaluated considering various outflow situations and ground conditions. The LNG leakage scenarios were simulated based on numerical analyses results varying the surcharge load, temperature boundary conditions, and soil types including freeze-sensitive soil. Consequently, short and long term ground temperature variations after LNG leakage were evaluated and the resulting ground behavior including vertical displacement behavior and porosity were analyzed.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 2 : Flow Characteristics under Cryogenic Condition) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제2부 : 극저온에서의 밸브 유동특성))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Bum-Suk;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • Recently, butterfly valves are used as control valves for industrial process. However, there are not so many reports on cryogenic butterfly valves in spite of broad application in LNG storage station and LNG carriers. Present study is focused on the investigation of the detailed hydrodynamic and aerodynamic characteristics of cryogenic butterfly valves to contribute to the operation during the handling on LNG transportation system, and to the practical utilization in design of butterfly valves and actuators. The results show that large recirculation vortices in the region downstream of the valve are founded and the cavitation flows are intensively generated on the surface of valve disc at the relatively small opening angle. The aerodynamic characteristics, lift, drag and torque, acting on the valve disc are calculated. The pressure distribution and the pressure loss coefficient of the cryogenic butterfly valve show almost similar pattern with those of the butterfly valve which is used on the normal temperature.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Analysis of a Cryogenic System for Cord Blood Banking

  • Zhang, Bin;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.981-986
    • /
    • 2009
  • The application of a cryogenic storage system is growing fast in different kinds of fields including to keep umbilical cord blood. Umbilical cord blood stem plays an important role in the treatment of a blood and immune system related genetic diseases, cancers and blood disorders. This study gives the optimal cryogenic system for cord blood banking. Three-dimensional models are employed and finite element method is used to do structure analyses of all designed models. The results shows model 3 have a good structure properties, and model 4 shows the best structure property as its maximum is 92.9 MPa. The other is too dangerous or infeasible to support load condition that allowed by STS 304. The results can be used in the design of these kinds of systems to obtain good predictions of trends over a wide range of design alternatives and operating conditions.