• Title/Summary/Keyword: cryogenic properties

Search Result 193, Processing Time 0.055 seconds

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

Cryogenic microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles

  • Bhuyan, Ranjan K.;Thatikonda, Santhosh K.;Dobbidi, Pamu;Renehan, J.M.;Jacob, Mohan V.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.105-116
    • /
    • 2014
  • The microwave dielectric properties of $CeO_2$ nanoparticles (0.5, 1.0 & 1.5wt%) doped $Mg_2TiO_4$ (MTO) ceramics have been investigated at cryogenic temperatures. The XRD patterns of the samples were refined using the full proof program reveal the inverse spinel structure without any secondary phases. The addition of $CeO_2$ nanoparticles lowered the sintering temperature with enhancement in density and grain size as compared to pure MTO ceramics. This is attributed to the higher sintering velocity of the fine particles. Further, the microwave dielectric properties of the MTO ceramics were measured at cryogenic temperatures in the temperature range of 6.5-295 K. It is observed that the loss tangent ($tan{\delta}$) of all the samples increased with temperature. However, the $CeO_2$ nanoparticles doped MTO ceramics manifested lower loss tangents as compared to the pure MTO ceramics. The loss tangents of the pure and MTO ceramics doped with 1.5 wt% of $CeO_2$ nanoparticles measured at 6.5K are found to be $6.6{\times}10^{-5}$ and $5.4{\times}10^{-5}$, respectively. The addition of $CeO_2$ nanoparticles did not cause any changes on the temperature stability of the MTO ceramics at cryogenic temperatures. On the other hand, the temperature coefficient of the permittivity increased with rise in temperature and with the wt% of $CeO_2$ nanoparticles. The obtained lower loss tangent values at cryogenic temperatures can be attributed to the decrease in both intrinsic and extrinsic losses in the MTO ceramics.

Enhancement of Mechanical Properties of 5052 Al Alloy by Cryogenic and Warm rolling (극저온 압연 및 온간 압연 기술을 이용한 5052 알루미늄 합금의 기계적 성질의 향상)

  • Gang, U.G.;Lee, S.H.;Lee, J.C.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.102-106
    • /
    • 2008
  • Cryogenic rolling combined with warm rolling has been found more effective than a single cryogenic rolling process in improving the strength of a 5052 Al alloy. In this study, cryo-rolled 5052 Al alloys were warm-rolled at $175^{\circ}C$. A notable increase of tensile strength was achieved by the precipitation during warm rolling process. Mechanical behavior of this alloy was investigated using hardness and tensile tests. It was found that the cryogenic rolling process combined with warm rolling process was very effective in improving tensile strength.

Cryogenic Behavior of Perovskite Materials

  • Paik, D.S.;Shin, H.Y.;Yoon, S.J.;Kim, H.J.;Park, C.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.126-129
    • /
    • 1999
  • Dielectric and piezoelectric properties of perovskite materials such as La modified $Pb(Zr,Ti)O_3$ ceramics and $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ single crystals were investigated for cryogenic capacitor and actuator applications. Enhanced extrinsic contributions resulted in piezoelectric coefficient (d33) as high as 250 pC/N at 30 K, superior to that of PZT ($d_{33}$ ~ 100 pC/N). This cryogenic property enhancement was associated with retuning the MPB (or cryogenic temperatures. PZN-PT single crystals exhibited dramatic property improvements such as $d_{33}$ > 500 pC/N at 30 K as a result of an engineered domain state.

  • PDF

The cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.264-267
    • /
    • 2010
  • This research focuses on the development of numerical code to deal with compressible two phase flow around three dimensional objects combined with cavitation model suggested by Weishyy et al. with k-e turbulent model. The cryogenic cavitation is carried out by considering the thermodynamic effect on physical properties of cryogenic fluids in physical point of view and implementing the temperature sensitivity in the energy equation of the government equations in numerical point of view, respectively. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils. Then, simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss numbers extending from single-phase flow conditions through the critical head break down point are discussed. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified.

  • PDF

A Reliability of Equation of State for Nitrogen, Oxygen and Argon (질소, 산소, 아르곤에 대한 상태방정식의 신뢰도)

  • Yong Pyeong-Soon;Moon Hung-Man;Son Moo-Ryong;Yi Sung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • The equation of state is widely utilized as a simple model for the prediction of gas properties. There are several equations of state and they often make diverse and hard to believe output of gas properties. In this study, We show a reliability of equation of state for nitrogen, oxygen and argon in pressure range from 1 bar to 30 bar and temperature range from liquefaction to room temperature. We use three equations of state such as Soave-Redlich-Kwong, Peng-Robinson and BWR-LS' equation of state which provided in the Aspen plus. The results were compared with literatures and virial equation. Finally, We report the differences of process calculation of distillation column and expansion turbine in cryogenic air separation plant with change of equation of state.

  • PDF

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Evaluation of Cryogenic Fracture Characteristics on TIG Weldments of Superconducting Magnets Structural Steel by Small Punch Testing Method (소형펀치 시험법에 의한 초전도 마그넷 구조용강 TIG 용접부의 극저온 파괴특성 평가)

  • ;T. Hashida
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.122-133
    • /
    • 1996
  • In order to evaluate the cryogenic fracture characteristics of structural steels for superconducting magnets of fusion reactor, small punch (SP) testing was performed on austenitic stainless steel (JN1 base metal) and its TIG weldments at 293K, 77K and 4K. The mechanical properties with respect to the extracted location of the weld metal, on the effects of welding heat cycle about base metal near fusion line in TIG weldments were investigated. The mechanical property of the weld metal in TIG weldments depends on distance from welding root, root region of weldments having the lowest mechanical property. The base metal near fusion line showed degradation of mechanical property caused by cyclic heating during the TIG welding. Based on the test results, HAZ was found to be up to 5mm from the fusion line. It is shown that SP testing is a useful tool to evaluate the mechanical properties with respect to the microstructures changes such as HAZ as well as weld metal in TIG weldments at cryogenic temperature.

  • PDF

Roasting and Cryogenic Grinding Enhance the Antioxidant Property of Sword Beans (Canavalia gladiata)

  • Jung, Ju-Yeong;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1706-1719
    • /
    • 2020
  • The objective of this study was to optimize the conditions for enhancing the antioxidant properties of sword bean (Canavalia gladiata) as a coffee substitute in two processing methods, roasting and grinding. The optimum conditions for removing off-flavor of the bean and maximizing functionality and efficiency were light roasting and cryogenic grinding (< 53 ㎛). In these conditions, extraction yield was 16.75%, total phenolic content (TPC) was 69.82 ± 0.35 mg gallic acid equivalents/g, and total flavonoid content (TFC) was 168.81 ± 1.64 mg quercetin equivalents/100 g. The antioxidant properties were 77.58 ± 0.27% for DPPH radical scavenging activity and 58.02 ± 0.76 mg Trolox equivalents/g for ABTS radical scavenging activity. The values for TFC and ABTS radical scavenging activity were significantly higher (p < 0.05) than in other conditions, and TPC and DPPH radical scavenging activity were second highest in lightly roasted beans, following raw beans. HS-SPME/GC-MS analysis confirmed that the amino acids and carbohydrates, which are the main components of sword bean, were condensed into other volatile flavor compounds, such as derivatives of furan, pyrazine, and pyrrole during roasting. Roasted and cryogenically ground (cryo-ground) sword beans showed higher functionality in terms of TFC, DPPH, and ABTS radical scavenging activities compared to those of coffee. Overall results showed that light roasting and cryogenic grinding are the most suitable processing conditions for enhancing the bioactivity of sword beans.