• Title/Summary/Keyword: cryogenic grinding

Search Result 5, Processing Time 0.018 seconds

Effect of Nutrition Permeability from Barley sprouts, Curcuma longa L., Dendropanax morbifera LEV., Phellinus linteus Using Cryogenic Grinding Technology (동결분쇄를 이용한 보리싹, 울금, 황칠, 상황버섯의 영양성분 증진 및 투과 효과)

  • Lee, Il-nam;Han, Ye-eun;Jeong, Ho-jun;Park, Haeun;Jung, Juyeong;Rhee, Jin-Kyu
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The purpose of this study was to improve the nutrition and the permeability of functional plants by using cryogenic grinding technology. Barley sprouts, Curcuma longa L., Dendropanax morbifera LEV., Phellinus linteus were dried, ground and extracted in different temperature conditions. Powder size of barley sprouts and Curcuma longa L. were about $50{\mu}m$ and Dendropanax morbifera LEV. and Phellinus linteus were about $20{\mu}m$. Cryogenic ground of Barley sprouts preserved 18.27-124.65% of nutrients such as protein, ash, carbohydrate, beta carotene, minerals, vitamins. Cryogenic grinding powder of Curcuma longa L. show high nutrients retention rate of lipid and carbohydrate. Permeability was measured by Parallel Artificial Membrane Permeability Assay (PAMPA) to predict passive gastrointestinal absorption. Permeability of saponarin, which is marker compound of Barley sprouts, is 9.88 times higher in cryogenic grinding powder than ambient grinding powder. Curcumin permability is 3.1 times higher than ambient grinded powder. As a result, particle size, nutrition, protein digestion degree and permeability demonstrated a positive relationship with the decreasing grinding temperature for the powders. These results confirm that the cryogenic grinding method had good suitability to increase functionality of plants, since it could minimize the heat generated while processing and effectively reduce the particle size.

Roasting and Cryogenic Grinding Enhance the Antioxidant Property of Sword Beans (Canavalia gladiata)

  • Jung, Ju-Yeong;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1706-1719
    • /
    • 2020
  • The objective of this study was to optimize the conditions for enhancing the antioxidant properties of sword bean (Canavalia gladiata) as a coffee substitute in two processing methods, roasting and grinding. The optimum conditions for removing off-flavor of the bean and maximizing functionality and efficiency were light roasting and cryogenic grinding (< 53 ㎛). In these conditions, extraction yield was 16.75%, total phenolic content (TPC) was 69.82 ± 0.35 mg gallic acid equivalents/g, and total flavonoid content (TFC) was 168.81 ± 1.64 mg quercetin equivalents/100 g. The antioxidant properties were 77.58 ± 0.27% for DPPH radical scavenging activity and 58.02 ± 0.76 mg Trolox equivalents/g for ABTS radical scavenging activity. The values for TFC and ABTS radical scavenging activity were significantly higher (p < 0.05) than in other conditions, and TPC and DPPH radical scavenging activity were second highest in lightly roasted beans, following raw beans. HS-SPME/GC-MS analysis confirmed that the amino acids and carbohydrates, which are the main components of sword bean, were condensed into other volatile flavor compounds, such as derivatives of furan, pyrazine, and pyrrole during roasting. Roasted and cryogenically ground (cryo-ground) sword beans showed higher functionality in terms of TFC, DPPH, and ABTS radical scavenging activities compared to those of coffee. Overall results showed that light roasting and cryogenic grinding are the most suitable processing conditions for enhancing the bioactivity of sword beans.

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Physicochemical Characteristics of Powder from Cryogenic Grinding of Aronia, Grapefruit, Black Bean, and Germinated Brown Rice (동결분쇄에 따른 아로니아, 자몽, 서리태, 발아현미의 이화학적 특성)

  • Jeon, Hyeong-ju;Lee, Il-nam;Han, Ye-eun;Jeong, Ho-jun;Park, Ha-eun;Jung, Ju-yeong;Rhee, Jin-Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.291-298
    • /
    • 2017
  • We compared the ingredients present in freeze-dried ground food samples with those present in hot air-dried and ambient ground food samples to optimize processing conditions for preserving nutrients in and for improving the ingestion of different foods. The freeze-dried ground sample of black bean showed 4.57% higher retention rate than the ambient ground sample of black bean. Mineral content was also significantly different between these two samples. Moreover, the freeze-dried ground sample of black bean contained 11.54% higher content of ${\beta}$-carotene, a precursor of vitamin A, than the ambient ground sample of black bean. Total anthocyanin content was 453.49 mg in the freeze-dried ground sample of Aronia compared with 158.98 mg in the ambient ground sample of Aronia. Contents of ${\beta}$-carotene and niacin increased by 129.47% and 439.39%, respectively, in the freeze-dried ground sample of grapefruit. Retention rates of proteins, carbohydrates, and niacin were 107.74%, 103.87%, and 156.52%, respectively, in the freeze-dried ground sample of germinated brown rice. Protein digestibility increased by 120.5% and 101.14% in the freeze-dried ground samples of Aronia and black bean, respectively, but did not increase in the freeze-dried ground samples of grapefruit and germinated brown rice.

Comparison of Total Phenolics, Total Flavonoids Contents, and Antioxidant Capacities of an Apple Cultivar (Malus domestica cv. Fuji) Peel Powder Prepared by Different Powdering Methods (분말가공법에 따른 국내산 사과껍질분말의 총페놀, 총플라보노이드 및 항산화능 비교)

  • Youn, So Jung;Rhee, Jin-Kyu;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at $60^{\circ}C$ or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.