• Title/Summary/Keyword: crushed fine aggregates

Search Result 66, Processing Time 0.026 seconds

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Preliminary Tests of Mortars Containing Magnetite as Fine Aggregate (자철석 혼입 모르터의 기초물성 연구)

  • Yoon, Sang Chun;Yang, Sung Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.82-88
    • /
    • 2013
  • In this project a preliminary experimental research work was done to apply mortars containing magnetite as fine aggregates unto floor finishing materials in order to make indoor environment eco-friendly and to have noiseproof control between floors. Crushed magnetites were substituted as sands in the mix design with a range of 0, 20, 40, 60, 100%. First far-infrared radiation tests to determine emissivity and emission power were done in accordance with the KICM test standard and an outstanding result was obtained. Density and compressive strength test results also showed that as the substitution increases, test values increase in a linear trend. However dry shrinkage test results revealed that as the substitution increases, shrinkage strain also increases. To clearly seek a solution about this problem, more experimental works should be done on oncoming experimental program.

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

A Basic Study on Spherical UO2 Kernel Preparation Using the Sol-Gel Method (Sol-Gel법을 이용한 구형 UO2 Kernel 제조에 관한 기초연구)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung;Na, Sang-Ho;Lee, Young-Woo;Chang, Jong-Wha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.618-623
    • /
    • 2005
  • HTGR (High Temperature Gas-Cooled Reactor) is highlighted to next generation power plant for producing the clean hydrogen gas. In this study, the spherical $UO_2$ kernel via $UO_3$ gel particles was prepared by the sol-gel process. Raw material of slightly Acid Deficient Uranyl Nitrate (ADUN) solution, which has pH = 1.10 and $[NO_3]/[U]$ mole ratio = 1.93, was obtained from dissolution of $U_3O_8$ powder with conc.-$HNO_3$. The surface of these spherical $UO_3$ gel particles, which was prepared from the broth solution, consisted of 1 M-uranium, 1 M-HMTA, and urea, were covered with the fine crystallite aggregates, and these particles were so hard that crushed well. But the other $UO_3$ gel particles prepared with the broth solution, consisted of 2 M-uranium, 2 M-HMTA, and urea, have soft surface characteristics and an amorphous phase. This type of $UO_3$ gel particles is some chance of doing possibility of high density from the compaction. The amorphous $UO_3$ gel particles was converted to $U_3O_8$ and then $UO_2$ by calcination at $600^{\circ}C\;in\;4\%\;-\;H_2\;+\;N2$ atmosphere.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.