• Title/Summary/Keyword: crosslinking

Search Result 904, Processing Time 0.035 seconds

The Change of Physical Properties of Epoxy Molding Compound According to the Change of Softening Point of ο-Cresol Novolac Epoxy Resin (올소 크레졸 노볼락 에폭시 수지 연화점 변화에 따른 에폭시 몰딩 컴파운드의 물성 변화)

  • Kim, Hwan Gun;Ryu, Je Hong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • The physical properties of epoxy molding compound (EMC) according to the change of softening point of epoxy resin have been investigated in order to study the relationship between the properties of o-cresol novolac epoxy resin, which is main component of EMC for semiconductor encapsulation, and EMC. The softening points of used epoxy resin are 65.1 $^{\circ}C$, 72.2 $^{\circ}C$, and 83.0 $^{\circ}C$, respectively. The flexural strength and flexural modulus as mechanical properties were measured, and thermal expansion coefficient, thermal conductivity and glass transition temperature (Tg) as thermal properties, and spiral flow as moldability have been investigated to see the change of physical properties of EMC. The flexural modulus, thermal expansion coefficients in the glass state (${\alpha}_1$), and thermal conductivity of EMC were found to be keep constant value irrespective of the change of softening point, but Tg increased with softening point of epoxy resin, and the spiral flow decreased with that. It can be considered that these phenomena are due to the increase of crosslinking density of EMC according to the increase of softening point. The transition points were found out in the thermal expansion coefficient data in the rubbery state (${\alpha}_2$) and the flexural strength data. These can show the decrease of filler dispersion according to increase of epoxy resin viscosity.

  • PDF

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge (혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성)

  • Park, Taejun;Yoo, Young Jae;Jung, Dong Hoon;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

A Study on the Characteristics of IR/CR Rubber Blends by Surface Treatment with Chlorine (염소의 표면처리에 따른 IR 및 CR Blend의 특성 연구)

  • Park, Ji-Hye;Lee, Chang-Seop;Park, Hyun-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.749-754
    • /
    • 2010
  • In this study, rubber vulcanization property, change in physical property, morphology and chemical characteristics of blended rubber depending on various IR/CR ratio were investigated for the purpose of the improvement of material property and durability. The effect of surface treatment by chlorine on the friction coefficient was also studied with various conditions of surface treatment. In terms of vulcanization property, as the amount of CR content increased, the speed of cure was decreased, while the density of crosslinking stayed constant. It means hardness and modulus were increased as the CR content increased. It is related to change in cure property and mechanical strength was improved by the effect of crystallization reaction. In the aging property, as the CR content increases, the changed amount of basic properties were decreased, which acts as a reducing factor in change of aged property by complementing weak point in mechanical property. It was found that the degree of property change for surface treated samples were reduced. According to the microscopic result, the degree of surface dispersion on rubber blends was increased by increasing CR content. Rubber surface showed uniform direction in pattern with increased smoothness and luster by treatment with chlorine. The degree of rubber reforming was measured by the remaining amount of chlorine and the friction coefficient was dependent on the amount of chlorine combined with rubber. In the initial stage of surface treatment, from 10 to 40 phr, the friction coefficient of specimen was rapidly reduced. However, as the concentration of chlorine solution increased, the change in friction coefficient was decreased.

Preparation and Properties of Flame Retardant Epoxy Resins Containing Phosphorous/Silicone Components (인/실리콘 함유 난연성 에폭시 수지의 제조 및 물성)

  • Kim, Chang-Heon;Ha, Do-Young;Lee, Young Hee;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.378-387
    • /
    • 2017
  • To obtain epoxy resin with permanently attached flame-retardant groups, phosphorus compound containing di-hydroxyl group [10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ] and silicone compound containing di-hydroxyl group (polydimethylsiloxane, hydroxyl terminated, PDMS) were reacted with uncured epoxy prepolymer (diglycidyl ether of bisphenol A, DGEBA) and then cured using 4,4-diaminodiphenylmethane (DDM) as a crosslinking agent. The properties of the resulting epoxy materials were characterized using Fourier transform infrared (FTIR) spectrometer, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI) test/vertical burning test (UL 94-V test), tensile properties test and impact test. This study examined the effect of phosphorus/silicone compound contents on the thermal/mechanical properties and flame retardancy of cured epoxy resins containing phosphorus and silicone compounds. It was found that the thermal/mechanical properties of epoxy resins containing phosphorus and silicone components were higher than those of simple epoxy resin. The flame-retardancy (LOI: 29.9 ~ 31.8% and UL 94-V: V-0) of all samples containing phosphorus compound and phosphrous compound/silicone compound was found to be passed the flame-retardant requirements (LOI: > 30%, UL 94-V: V-0) of LOI and vertical burning tests. However, the flame-retardancy (LOI: 21.4% and UL 94-V: no rating) of simple epoxy resin was found to be failed the flame-retardant requirements.

Swelling and Drug Release Characteristics of PVP Hydrogel Polymerized by $\gamma$-Irradiation Method (김마선 조사법으로 합성한 PVP하이드로겔의 팽윤과 약물방출특성)

  • 심창구;오정숙;신병철
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.511-519
    • /
    • 1993
  • The short and variabke transit of drug throught GI tracj and the inter-and intra-subject variations of the transit restrict the sustained drug absorption after oral adminstration. These restrictions may be solved by retaining the dosage forms in the stomach. Then the dosage form will act as a platform which releases the drug slowly and makes the GI absorption occur for a long time. In this study, as the platforms, PVP hydrogels were synthesized by chemical and y-irradiation method in the cylindrical test tube. The chemical method means the synthesis of the hydrogel by heating the mixed solution of N-vinyl-2-pyrrolidone [monomer], acrylated albumin [crosslinking agent], 2, 2'-agobis(2-methylpropionitrile) [initiator] and proxyphylline [drug] at $65^{\circ}C$ for 5 hr. The $\gamma$-irradiation method means the synthesis of the hydrogel by irradiation with $^{60}$ Co $\gamma$-ray of the mixed solution of the monomer, acrylated albumin, and flurbiprofen [drug] at room temperature with total 0.2 Mrad for 3 hr. Our intention is to design the hydrogel tablet (diameter : 1.20 cm, thickness : 0.60 cm) which swells in the gastric fluid after oral administration to such a size that passing through the pylorus could be inhibited during the period of drug release. After releasing drug, the hydrogel should be degraded by the enzymeatic digestion in the stomach, or by hydrolysis and eventually solubilized. Thus, in votro tests were performed to examine the factors that affect swelling and drug release from the PVP hydrogels. Experimental results show that the hydrogels swell to a size larger than the diameter of the pylorus(l.3$\pm$0.7 cm) and the hydrogel prepared by the chemical method is digested by pepsin. But the hydrogel prepared by the $\gamma$-irradiation method was not digested by the pepsin and just collapsed with time. Thus, the swelling of the hydrogel synthesized by $\gamma$-irradiation was independent albumin acrylation time and pepsin concentration. But drug content and radiation dose affected the swelling and drug release kinetics of the hydrogel. Drug release from the hydrigels was prolonged up to about 24 hr. Therefore, it was concluded that by adjusting these factors, the albumin-crosslinked PVP hydrogel synthesized by $\gamma$-irradiation method is expected to be retained in the stomach for up to 60hr and be a potential platform of drugs for long-term GI absorption.

  • PDF

Effect of Red Bean Protein and Microbial Transglutaminase on Gelling Properties of Myofibrillar Protein (적소두단백질(Red Bean Protein)과 Transglutaminase를 첨가한 돈육 근원섬유 단백질의 물성 증진 효과)

  • Jang, Ho-Sik;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.782-790
    • /
    • 2011
  • The effects of soy protein isolate (SPI) and red bean protein isolate (RBPI) on gelling properties of pork myofibrillar protein (MP) in the presence of microbial transglutaminase (MTG) were studied at 0.45 M NaCl. MP paste was incubated with MTG (0.1%) at various levels (0.1, 0.3, 0.5, and 1%) of SPI and RBPI before incubating at $4^{\circ}C$ for 4 h. The rheological property results showed that MP gel shear stress increased with increasing RBPI concentration. Cooking yield (CY) of the MP gel increased with increasing RBPI and SPI, whereas gel strength (GS) was not affected by adding RBPI or SPI. Thus, effects of incubation time (0, 4, 8, 10, and 12 h) were measured at 0.1% SPI and RBPI. GS values of the MP gel at 10 and 12 h were similar and were higher than those of the others. CY values were highest when RBPI (0.1%) was added, regardless of incubation time. The protein patterns indicated that incubating the MP with MTG for 10 h resulted in protein crosslinking between MP and RBPI or SPI. Based on these results, RBPI and SPI could be used as an ingredient to increase textural properties and cooking yield of meat protein gel.

Anti-allergic Effect of Ethanolic Extract of Flos Sophora japonica L. on Ca++ Ionophore Stimulated Murine RBL-2H3 Cells (괴화(槐花) 에탄올 추출물이 RBL-2H3 비만세포에서 Ca++ Ionophore에 의한 알레르기 반응 조절에 미치는 효과)

  • Xiao, Sun;Jiang, Jun;Shim, Do-Wan;Kim, Tae-Kweon;Kang, Tae-Bong;Lee, Kwang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.349-354
    • /
    • 2014
  • Elevation of intracellular calcium ($Ca^{{+}{+}}$) triggers degranulation of mast cells by bypassing receptor activation. Flos Sophora japonica L. has been used as a natural dying source and has been reported to have biological activities such as anti-inflammatory and anti-allergic effects through $Fc{\varepsilon}RI$ and IgE crosslinking. In the present investigation, we report the regulatory effect of ethanolic extract of Flos Sophora japonica L. (S.F) on allergic mediators produced by $Ca^{{+}{+}}$ ionophore activation in mast cells. S.F significantly inhibited calcium ionophore (A23187)-induced interleukin (IL)-4 and tumor necrosis factor (TNF)-${\alpha}$ production as well as mast cell degranulation. Furthermore, administration of S.F suppressed allergic reactions in a 2,4-dinitrofluorobenzene (DNFB)-induced allergic dermatitis mouse model. Both oral administration and ear painting using 50 mg/kg of S.F significantly reduced levels of cytokines such as IL-4, TNF, and interferon-${\gamma}$ in ear tissues compared to the DNFB alone-treated group. Serum IgE level in the S.F-treated group also decreased compared to the DNFB alone-treated group. Weights of spleens and lymph nodes in the S.F-treated groups also decreased compared to the control group. Considering the data, we conclude that S.F mediates its anti-allergic effects not only through $Fc{\varepsilon}RI$ stimulation but also $Ca^{{+}{+}}$ influx in mast cells.

Preparation and Characterization of Biomass-based Polymer Blend Films(2) (Biomass-based 고분자 블렌드 필름의 제조 및 특성 연구(2))

  • Lee, Soo;Park, Myung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.305-311
    • /
    • 2013
  • PLA(polylactic acid), one of biodegradable polymers was blended with various amounts of wood pulp powder through solution blending technic to verify the effect of reinforcing pulp amount on the mechanical properties of blend films. Also these blend films were further modified with TDI(toluene diisocyanate) as crosslinking agent to introduce urethane functions by reaction of pulp hydroxyl groups and isocyanate. As a result, the tensile strength of blend film with 0.25 wt% pulp was increased from $565.25kg_f/cm^2$ for PLA film itself to $624.20kg_f/cm^2$. However, elongation of this film was decreased by 50% of that of PLA film itself. Only PLA/pulp blend film further modified with 500% of TDI/0.25 wt% pulp showed the slightly increased tensile strength but decreased elongation. Melting point and glass transition temperature of PLA/pulp blend films were confirmed by using Differential Scanning Calorimeter(DSC). Thermal stability of these blend films measured by TGA showed only a slight increase at temperature lower than $300^{\circ}C$.

Toughness of Polyurethane-Modified Unsaturated Polyester Resin (폴리우레탄으로 개질한 불포화 폴리에스테르 수지의 강인성)

  • Hwang, Yeong-Geun;Min, Kyung-Eun;Choi, Gwan-Young;Kim, Woo-Sik;Lee, Dong-Ho;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu;Jun, Il-Ryun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Unsaturated polyester(UP) resin is one of the major thermosetting resins. It is very useful as the matrix resin of the composite material because of its low viscosity. The polymer resin, however, has several drawbacks; The volume shrinkage occurs during the crosslinking reaction of the UP resin with styrene monomer and the resulting polymer is weak to the alkali and also brittle. The mechanical properties of UP resin can be improved by blending various materials. In this study, polyurethane(PU) was used as a modifier in order to enhance the toughness of the UP resin. The goal of the research is to study the effect of the polyol molecular weight as a PU soft segment and the PU contents on the toughness of PU-modified UP resins. UP/PU polymer network may occur through the reaction between isocyanate group in the methyldiisocyanate(MDI) and hydroxyl group in the UP molecules. The maximum toughness value was shown at 2 wt% of the PU content. This effect results from the incorporation of the PU segment into the UP resin.

  • PDF

Preparation and Characterization of Anion Exchange Membrane Based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) with Spacer-type Conducting Group (Spacer-type 전도기가 도입된 가교형 poly(2,6-dimethyl-1,4-phenylene oxide) 음이온 교환막의 제조 및 특성평가)

  • Lim, Haeryang;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.425-433
    • /
    • 2017
  • As the problems related to the environmental pollution such as carbon dioxide emission are emerging, the need for the renewable energy and environmentally friendly energy is getting intense. Fuel cells are eco-friendly energy generation devices that generate electrical energy and produce water as a sole by-product. Compared to the traditional proton exchange membrane fuel cell (PEMFC), anion exchange membrane alkaline fuel cell (AEMAFC) has a main advantage of possibility to use low cost metal catalysts due to its faster kinetics. The AEM, which conducts $OH^-$ ions, should possess high ion conductivity as well as high chemical stability at high pH conditions. We hereby introduce a crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) having a spacer-type conducting group as novel AEM, and report a high ion conductivity ($67.9mScm^{-1}$ at $80^{\circ}C$) and mechanical properties (Young's modulus : 0.53 GPa) as well as chemical stability (6.8% IEC loss at $80^{\circ}C$ for 1,000 h,) for the developed membrane.