• Title/Summary/Keyword: crossflow velocity

Search Result 52, Processing Time 0.033 seconds

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

A Study on Velocity Distribution Around Ship Stern by Improved Power Law Flow Model (멱법칙 유동모델의 개선에 의한 선미 유동장내 속도분포 연구)

  • 김시영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1391-1397
    • /
    • 1992
  • Improved power law flow model was suggested for the calculation of wake flow characteristics around the three dimensional ship stern in case of the formation of bilge vortex in the direction of stern. In comparison with the power law and Coles flow model, the flow velocity calculated based on this study was delayed around the boundary of inner layer and outer layer in reverse flow. More accurate results was obtained with this improved power law flow model by the velocity calculation around ship stern. Accuracy was validated with the comparison of other calculation results and experimental datas.

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem (균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여)

  • 이기백;김봉환;양장식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1518-1528
    • /
    • 1993
  • The wake-induced vibration and proximity-induced vibration of two interfering circular cylinders in tandem are investigated experimentally, using an elastically supported cylinder and a fixed cylinder in uniform crossflow. Dynamic responses and flow periodicity in wake are measured to investigate the effect of system parameters on aerodynamic instability. The parameters include the free stream wind velocity and the position of two interfering circular cylinders. The oscillating behavior of the amplitude of the elastically supported cylinder is changed by varying the position, the relative gap spacing between two interfering circular cylinders and the reduced velocities. In small gap spacing between the elastically supported cylinder located to upstream and the circular cylinder fixed to downstream, the fluidelastic instability is founded. The vibration amplitude decreases notably as gap spacing between two interfering circular cylinders becomes large. The dynamic behavior at g/D-4.0 is similar to that of the single circular cylinder.

Turbulent Dispersion Behavior of a Jet Issued into Thermally Stratified Cross Flows(I) (열적으로 성층화된 횡단류에 분출된 제트의 난류확산 거동(I))

  • Kim, Kyung Chun;Kim, Sang Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • Flow visualization study has been conducted to simulate the turbulent dispersion behavior of a crossflow jet physically under the conditions of various thermal stratification in a wind tunnel. A smoke jet with the constant ratio of the jet to freestream velocity is injected normally to the cross flow of the thermally stratified wind tunnel(TSWT) for flow visualization. The typical natures of the smoke dispersion under different thermal stratifications such as neutral, weakly stable, strongly stable, weakly unstable, strongly unstable and inversion layer are successfully reproduced in the TSWT. The Instantaneous velocity and temperature fluctuations are measured by using a cold and hot-wire combination probe. The time averaged dispersion behaviors, the centerline trajectories, the spreading angles and the virtual origins of the cross jet are deduced from the edge detected images with respect to the stability parameter. All the general characteristics of the turbulent dispersion behavior reveal that the definitely different dispersion mechanisms are inherent in both stable and unstable conditions. It is conjectured that the turbulent statistics obtained in the various stability conditions quantitatively demonstrate the vertical scalar flux plays a key role in the turbulent dispersion behavior.

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

Characteristic of Liquid Jet in Subsonic Cross-flow (횡단가스 유동에 분사되는 액체제트의 분무특성)

  • Ko, Jung-Bin;Lee, Kwan-Hyung;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

Experimental Study for the Aerodynamic Characteristics of Slanted-Base Ogive Cylinder (기저면이 경사진 Ogive실린더의 공력특성에 관한 실험적 연구)

  • 맹주성;양시영;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2664-2674
    • /
    • 1994
  • Drag, lift, and pitching moment measurements have been made on a range of slanted-base ogive cylinders, using the KANOMAX wind tunnel and balance system. Test Reynolds numbers(based on model maximum diameter) varied from $0.54{\times}10^{5}{\;}to{\;}1.56{\times}10^{5}$. Crossflow velocity maesurement was conducted by 5-hole pitot tube at $Re_{D}=1.46{\times}10^{5}$. For two base angle $({\theta}=30$ and 45 deg.), aerodynamic forces and moment were measured with increasing angle of attack(0~30 deg.). Two types of wake flow were observed, a quasisymetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. It was found that the drag, lift and pitching moment coefficients increased with increasing angle of attack.