• Title/Summary/Keyword: cross-sections

Search Result 1,478, Processing Time 0.042 seconds

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Correlation between sagittal condylar guidance angles obtained using radiographic and protrusive occlusal record methods

  • Kwon, Oh-Kyun;Yang, Seung-Won;Kim, Jee-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.302-307
    • /
    • 2017
  • PURPOSE. This study compared the SCGAs measured in three types of radiographic images (panoramic, CBCT panoramic-section, and CBCT cross-section images) with values measured using the protrusive occlusal record. MATERIALS AND METHODS. SCGAs were measured in 20 patients on a semi-adjustable articulator using the protrusive interocclusal record. Panoramic and CBCT images were obtained. SCGAs were measured on CBCT images in panoramic and cross sections. In all of the radiographic images, SCGAs were measured using the Frankfort horizontal reference line and the mean curvature line. The most-superior and most-inferior points of the curvatures were identified to determine the mean curvature line. Each measurement was performed twice by two operators independently. The data were analyzed by the t-test, Pearson's correlation test, and Cronbach's ${\alpha}$ using SPSS (${\alpha}=.05$). RESULTS. The mean right and left SCGAs were as follows: protrusive occlusal record (30.1 and 30.2 degrees, respectively), panoramic (38.9 and 38.7 degrees), CBCT panoramic sections (35.4 and 36.8 degrees), and CBCT cross sections (35.3 and 36.1 degrees). The SCGAs differed significantly among the groups. The Pearson coefficients for the correlations with the protrusive occlusal record measurements on the left and right sides were as follows: panoramic (0.834 and 0.791, respectively), CBCT panoramic-section (0.918 and 0.837), and CBCT cross-section (0.918 and 0.845) images. CONCLUSION. Strong correlations were found between SCGAs obtained using radiographic images and the protrusive occlusal record.

Temporal Change of Fluvial Geomorphology in the Middle Reaches of the Sumjin River, Korea (섬진강 중류 (곡성-순창) 구간의 하천지형 변화 연구)

  • 남욱현;양동윤;김주용;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2002
  • Analysis of No. 199∼145 cross-sections set up by the Ministry of Construction (1978) in the middle reaches of the Sumjin River around Sunchang, Daegang, and Goksung areas have been done for delineating the changes In fluvial geomorphic features. The entire river-bed in the study area has been considerably degraded since 1978. In some cross-sections, the thalweg shillings are observed. Two aspects are responsible for the erosion-dominant environment. First, flow velocity has been increased. Human activities including wetland destruction, ex-channel destruction and artificial levee construction reduced the channel width, and fixed the channel geometry. This has resulted in increase of the water velocity. Pebble and granule∼coarse sand are prevailing on the river-bed, indicate the high speed of the currents. Second, aggregate has been intensively mined during 1980s∼1990s around the areas. Especially, in the right side of the cross-sections No. 188∼187 and the left side of the cross-section No. 155, erosion toward under the artificial levee is remarkable. This can be led to bank failure in case of heavy rainfall.

  • PDF

Experimental Study on Seepage Losses in Earth Channel (흙 수로에 대한 삼수손실량 추정에 관한 실험적 연구)

  • 정하우;유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2853-2877
    • /
    • 1973
  • Models of cross-sections and channels were made in order to measure seepage losses. Cross-sections were made of sand, sandy clay loam and loam, their thicknesses being 30cm and 40cm, respectively. Flow depths kept in the cross-sections were 4cm, 6cm, 8cm and 10cm. Straight and curved channel models were provided so as to measure seepage losses, when constant water depths maintained at the heads of the channels were 7.3cm and 5.7cm, respectively. The results obtained in this experiment are presented as follows: 1) A cumulative seepage loss per unit length at a point in the channel varies in accordance with time and flow depth. The general equation of cumulative seepage loss may be as follows(Ref. to Table V.25): $$q_{cum}=\int_{o}^aq(a)dt+\int_a^bq(b)dt+\int_b^tq(c)dt$$ 2) In case that the variation of water depth through the channel is slight, the total seepage loss may be computed by applying the following general equation: $$\={q}_{cum}{\cdot}x=\int_o^tq_{cum}\frac{{\partial}x}{{\partial}t}dt$$ 3) Because seepage loss varies considerably according to water depth in case that the variation of flow depth through the channel is great, seepage loss should be computed by taking account of the change of flow depth. 4) The relation between time and traveling distance of water flow may be presented as the following general equation(Ref. to Table V.29): $$x=pt^r$$ 5) The ratios of the seepage losses of the straight channel to the curved channel are 1:1.03 for a flow depth of 7.3cm and 1:1.068 for that of 5.7cm. 6) The ratios of the seepage losses occurring through the bottom to those through the inclined plane in the channel cross-section are 1:2.24 for a water depth of 8cm and 1:2.47 for a depth of 10cm in case that soil-layer is 30cm in thickness. Similarly, those ratios are 1:2.62 and 1:2.93 in case of a soil-layer thickness of 40cm(Ref. to Table V.5).

  • PDF

The Impact of Armor Block Failure on Wave Pressure Acting on a Vertical Wall at the Front of a Caisson (피복 케이슨의 소파블록 이탈이 직립벽에 작용하는 파압에 미치는 영향)

  • Taegun Park;Yeon-Myeong Jung;Jeongheum Lee;Jaeheon Jeong;Dong-Soo Hur
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.303-309
    • /
    • 2024
  • This study examines the effects of wave pressure on a vertical wall due to armor block failure at the front of a caisson, using a 2-D hydraulic model to simulate three types of armor block cross-sections. Additionally, the hydraulic characteristics of two cross-sections that replicated the armor blocks' failure, based on complete cross-sections, were compared. Moreover, quantitative analysis indicated that in the cross-section where the displacement of the armor block was recreated, wave run-up( ) increased by an average of 73%, the sum of dimensionless wave pressures increased by 28%, and converted wave force rose by 33%. These findings underscore the need for countermeasures in the event of armor block failure.

CFD practical application in conceptual design of a 425 m cable-stayed bridge

  • Nieto, F.;Hernandez, S.;Jurado, J.A.;Baldomir, A.
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.309-326
    • /
    • 2010
  • CFD techniques try to find their way in the bridge engineering realm nowadays. However, there are certain fields where they offer superior performance such as conceptual bridge design and bidding design. The CFD studies carried out for the conceptual design of a 425 m length cable-stayed bridge are presented. A CFD commercial package has been employed to obtain for a set of cross-sections the aerodynamic coefficients considering 2D steady state. Additionally, for those cross-sections which showed adequate force coefficients, unsteady 2D simulations were carried out to detect the risk of vortex shedding. Based upon these computations the effect on the aerodynamic behavior of the deck cross-section caused by a number of modifications has been evaluated. As a consequence, a new more feasible cross-section design has been proposed. Nevertheless, if the design process proceeds to a more detailed step a comprehensive set of studies, comprising extensive wind tunnel tests, are required to better find out the aerodynamic bridge behavior.