• 제목/요약/키워드: cross-sectional capacity

검색결과 179건 처리시간 0.023초

중공롤러의 절단면 형상변화에 따른 변형거동 특성해석 (Characteristic Analysis of Displacement Behavior of Hollow Rollers with Cross Sectional Area Profiles)

  • 정준기;김청균
    • 한국가스학회지
    • /
    • 제19권4호
    • /
    • pp.55-61
    • /
    • 2015
  • 본 연구에서는 여러 가지의 절단면 형상과 하중지지 용량을 높이기 위해 원판을 설치한 중공롤러의 변위거동 특성을 유한요소법으로 해석하였다. FEM 해석결과에 의하면, 중공롤러의 절단면 형상은 외측튜브, 중간튜브, 내측튜브와 이들 튜브들 사이를 연결하기 위해 X형 또는 Y형 컬럼을 설치한 경우는 중공롤러의 중간부에서 발생하는 최대 변위량을 줄여주는 효과가 있다. 여기에 중공롤러의 중간부 두께를 30~40mm 갖는 원판을 설치할 경우는 중공롤러의 최대 변위량을 줄이는데 효과가 크다는 해석결과를 제시하였다. 본 연구에서는 원통롤러의 전체 중량에 연계된 최대 변위량 비율을 고찰한 최적설계 데이터를 제하였다. FEM 해석결과에 의하면, 중공롤러에서 발생하는 최대 변위량과 전체 중량의 비율을 줄인 설계모델로는 4, 5와 6번을 추천할 수 있다.

횡변형 방지 상세 유무 및 스트럿 형상에 따른 강재댐퍼의 성능 비교 (Performance Comparison of Steel Dampers with or without Lateral Deformation Prevention Details and Strut Shapes)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.66-73
    • /
    • 2022
  • 본 연구에서는 록킹 거동을 하는 강재댐퍼에 대한 기존 연구결과를 근간으로 스트럿 높이가 동일하고 단면적이 유사한 댐퍼 7개의 실험결과를 비교하였다. 강판댐퍼로 Ldpd(횡변형 방지 상세) 없는 SI-260, SV-260, SS-260, Ldpd 있는 I-1, V-1, S-1 및 강봉댐퍼인 R20-260을 평가하였다. 또한 단면적이 0.56배인 R15-260도 같이 평가하여, 강봉댐퍼 거동 성능을 적절히 평가하고자 하였다. 중요한 연구결과는 강판댐퍼의 일방향성을 개선한 강봉댐퍼 적용의 우수성이며, 이는 모멘트 저항 능력 및 변위비 평가에서도 확인할 수 있었다. 평가결과, 강봉댐퍼인 R20-260의 성능이 가장 우수한 것으로 평가되었다. 또한 변위비 2.0까지 변형 능력을 나타내어, 충분한 내진성능을 보유한 것으로 판단된다.

The Characteristics related to Pulmonary Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease: A Cross-sectional Study, Data from the Korea National Health and Nutrition Examination Survey 2015-2019.

  • Kyeongbong Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권3호
    • /
    • pp.229-239
    • /
    • 2023
  • Objective: Patients with chronic obstructive pulmonary disease (COPD) may experience reduced physical activity and quality of life (QoL) due to decreased pulmonary function. The purpose of this study was to investigate the level of pulmonary function, physical activity, and QoL of COPD patients. Design: Cross-sectional observational study. Methods: This study examined the published data of the Korea National Health and Nutrition Examination Survey in 2015-2019. Among 39,759 subjects who participated for 5 years, data from 151 patients diagnosed with COPD were analyzed separately. For the pulmonary function, the results of forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV6, forced expiratory flow 25-75%, and peak expiratory flow were observed. Physical activity was identified as frequency and duration. For the QoL, EQ-5D-3L evaluation results were examined, and the frequency and index of the Korean version were investigated. Results: In pulmonary function, all variables were found to be lower than age and weighted matched normal values. COPD patients showed to perform very low levels of high/medium physical activity and sitting time was confirmed to be more than 8 hours a day. In QoL, it was found that the highest reporting rate of some problems was the "pain and discomfort" and "mobility". Conclusions: It was found that COPD patients showed that the prevalence of circulatory disease was relatively high, lowered pulmonary function, and QoL. These can be improved through regular physical activity, and it is thought that this can be achieved through optimization of pulmonary rehabilitation.

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

Performance assessment of buckling restrained brace with tubular profile

  • Cao, Yan;Azar, Sadaf Mahmoudi;Shah, S.N.R.;Salih, Ahmed Fathi Mohamed;Thiagi, Tiana;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in nano research
    • /
    • 제8권4호
    • /
    • pp.323-333
    • /
    • 2020
  • In recent years, there has been an upsurge for the usage of buckling restrained braces (BRB) rather than ordinary braces, as they have evidently performed better. If the overall brace buckling is ignored, BRBs are proven to have higher energy absorption capacity and flexibility. This article aims to deliberate an economically efficient yet adequate type of all-steel BRB, comprised of the main components as in traditional ones, such as : (1) a steel core that holds all axial forces and (2) a steel restrainer tube that hinders buckling to occurr in the core; there is a more practical detailing in the BRB system due to the elimination of a filling mortar. An investigation has been conducted for the proposed rectangular-tube core BRB and it is hysteric behavioral results have been compared to previous researches conducted on a structure containing a similar plate core profile that has the same cross-sectional area in its core. A loss of strength is known to occur in the BRB when the limiting condition of local buckling is not satisfied, thus causing instability. This typically occurs when the thickness of the restrainer tube's wall is smaller than the cross-sectional area of the core plate or its width. In this study, a parametric investigation for BRBs with different formations has been performed to verify the effect of the design parameters such as different core section profiles, restraining member width to thickness ratio and relative cross-sectional area of the core to restrainer, on buckling load evaluation. The proposed BRB investigation results have also been presented and compared to past BRB researches with a plate profile as the core section, and the advantages and disadvantages of this configuration have been discussed, and it is concluded that BRBs with tubular core section exhibit a better seismic performance than the ones with a plate core profile.

다축응력상태의 구성관계에 기초한 FRP 콘크리트 부재의 층분할 단면해석모델 (Model for fiber Cross-Sectional Analysis of FRP Concrete Members Based on the Constitutive Law in Multi-Axial Stress States)

  • 조창근;김영상;배수호;김환석
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.892-899
    • /
    • 2002
  • 콘크리트 휨 부재의 내하능력을 개선하는 방법들 중에서, 최근에 와서, 기존의 철근콘크리트 부재에서 사용하는 철근을 대신하여 섬유보강폴리머(FRP) 복합재료 층으로 보강한 콘크리트 부재에 관한 연구가 이루어지고 있다. 본 연구는 휨을 받는 원형단면 FRP 콘크리트 부재의 거동을 예측하기 위한 해석모델에 중점을 두고 있다. FRP층과 내부에 충진된 콘크리트로 이루어진 부재의 응력 및 변형을 예측하기 위하여 층분할 단면해석 모델이 제시되었다. 콘크리트의 압축거동이 횡방향 팽창에 의존한다는 가정과 다축 압축 응력상태의 구성관계에 기초하여 FRP 층으로 둘러 쌓인 콘크리트의 응력변형률 관계를 정식화하였다. 고전적 적층이론에서, FRP 층의 거동은 2차원 적층의 면내거동의 응력-변형률 관계에 기초한 등 가직교재료특성에 기초하여 정식화하였다. 소개된 해석모델의 검증을 위하여 원형단면 FRP 콘크리트 휨 부재의 4점 실험과 비교한 결과, 본 모델은 부재의 모멘트-곡률 관계, 단면에서의 축방향 변형률뿐만 아니라 횡방향 변형률, 그리고 FRP 층으로 인한 콘크리트의 구속효과의 증진에 관한 거동 특성들을 잘 예측해 주었다.

굽힘하중을 받는 보강 사각관 보의 좌굴변형거동 해석 (Bending Analysis of Reinforced Tube Beams)

  • 최낙삼;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.60-65
    • /
    • 2007
  • Local buckling behaviors of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been analyzed using experimental tests combined with theoretical and finite element analyses. For this analysis true stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing. True strains were also obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens reinforced by aluminum plates were employed for the bending test. The bending deformation behaviors up to the maximum load analyzed by the numerical simulation agreed well with experimental ones. After passing the maximum load, reinforcing plate hindering the local buckling of the tube beam was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed the most excellent bending capacity, which could be explained on the basis of the neutral axis shift and the local buckling deformation range.

  • PDF

Experimental study on hysteretic properties of SRC columns with high steel ratio

  • Lu, Xilin;Yin, Xiaowei;Jiang, Huanjun
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.287-303
    • /
    • 2014
  • 8 steel reinforced concrete (SRC) columns with the encased steel ratio of 13.12% and 15.04% respectively were tested under the test axial load ratio of 0.33-0.80 and the low-frequency cyclic lateral loading. The cross sectional area of composite columns was $500mm{\times}500mm$. The mechanical properties, failure modes and deformabilities were studied. All the specimens produced flexure failure subject to combined axial force, bending moment and shear. Force-displacement hysteretic curves, strain curves of encased steels and rebars were obtained. The interaction behavior of encased steel and concrete were verified. The hysteretic curves of columns were plump in shapes. Hysteresis loops were almost coincident under the same levels of lateral loading, and bearing capacities did not change much, which indicated that the columns had good energy-dissipation performance and seismic capacity. Based on the equilibrium equation, the suggested practical calculation method could accurately predict the flexural strength of SRC columns with cross-shaped section encased steel. The obtained M-N curves of SRC columns can be used as references for further studies.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

An Integrated Approach to Linking Job Love with Contextual Factors and Performance: An Empirical Study from Pakistan

  • BIBI, Naila;SAEED, Bilal Bin;AFRIDI, Muhammad Asim
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.157-169
    • /
    • 2022
  • Job love is an emerging phenomenon, which is the utmost approach to fulfilling employees' and organizations' mutual interests, especially performance. The current study aims to define and extend the existing proposed construct of "loving one's job" as job love. It provides a novel theoretical multi-level framework of job love, contextual factors, and performance principled on the attraction-selection-attrition framework and social exchange theory through an integrated approach. This study collected cross-sectional data through a questionnaire from 332 nurses across eight tertiary hospitals in Khyber Pakhtunkhwa, Pakistan. The findings are based on the structural equation modeling technique (SEM) at multi-levels. The results show significant relationships between job love, contextual factors, and performance at the individual and organization levels. There are some insignificant relationships between the variables at the cross-level. Job love plays a key role for both employees and organizations. It facilitates the individuals in the recruitment process to select the job they love, be a good fit, and stay committed to that particular job and organization. This phenomenon allows people to pursue their common interests. Job love assists firms in developing human resource capacity utilization plans that satisfy the needed requirements.