• Title/Summary/Keyword: cross-sectional area method

Search Result 352, Processing Time 0.026 seconds

A Study on Central Bursting Defects in Forward Extrusion by the Finite Element Method (유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구)

  • Kim, T.H.;Lee, J.H.;Kwon, H.H.;Kim, B.M.;Kang, B.S.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created in extrusion or drawing processes. The process factors which affect the generation of defects are semi-angle of die, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the possibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of round holes with process conditions such as semi-angle of die, reduction ratio of cross-sectional area and friction factor at the non-steady state of axisymmetrical extrusion process when the round hole is already existed inside the original billet. Also, the effects of process factors are investigated to prevent the possible defects.

  • PDF

A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research (동맥 전단부의 역학적분석을 위한 새로운 실험적 방법)

  • 황민철;신정욱
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 1995
  • This paper suggests a new experimental system and protocol of mechanical analysis for arterial cross-section research. So far, most methods of arterial studies have been focused on the deformation measurement in longitudinal and circumferential direction. The deformation in radial direction has been theoretically assumed by Poisson's ratio and/or the incompressibility of arterial wall. Also, the radial gradient of strains are neglected. In fact, the radial deformation and radial gradient of strains against blood pressure are important to be observed in the pathological point of view of artery. Proposed experimental system and protocol are to measure the deformation of cross-sectional artery. Also, this method enables to measure the deformation of anterior, posterior, and side site of cross-sectional area. It is meaningful to correlate the mechanically experimented data with pathological data of athroscIerotic artery.

  • PDF

Effects of Isometric Contraction Training by Electrostimulation on Type I and II Hindlimb Muscles in Cerebral Ischemia Model Rats (전기자극을 이용한 등척성 수축훈련이 뇌허혈 유발 쥐의 환측 Type I, II 근육에 미치는 영향)

  • Lee, Yoon-Kyong;Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.7
    • /
    • pp.1232-1241
    • /
    • 2006
  • Purpose: The purpose of this study was to examine the effects of cerebral ischemia on Type I(soleus) and Type II(plantaris, gastrocnemius) muscles, and to determine the effects of isometric contraction training by electro- stimulation on Type I and II muscles in cerebral ischemia model rats. Method: Twenty-five male Sprague-Dawley rats were randomly divided into four groups: ST(stroke), STES(stroke+electrostimulation), SH(sham) and SHES (sham+electrostimulation). The ST and STES groups received a transient right middle cerebral artery occlusion operation. The SH and SHES groups received a sham operation. The STES and SHES groups had daily isometric contraction training by electrostimulation(100Hz, 45mA, 7.5V) on hindlimb muscles for 7days. Result: Plantaris and gastrocenmius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the muscle fiber cross-sectional area of gastrocnemius in the ST group significantly decreased compared with the SH group. Soleus, plantaris, gastrocnemius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the Type I muscle fiber cross-sectional area of soleus and the Type II muscle fiber cross-sectional area of gastrocnemius in the STES group significantly increased compared with the 57 group. Conclusion: Hindlimb muscle atrophy occurs after acute stroke and isometric contraction training by electrostimulation during early stages of a stroke attenuates muscle atrophy of Type I and Type II muscles.

Analysis of the Effectiveness of Space Object Collision Avoidance through Nano-Satellite Attitude Maneuver (초소형위성 자세제어를 통한 우주물체 충돌회피 효용성 분석)

  • Jaedong Seong;Okchul Jung;Youeyun Jung;Saehan Song
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.62-73
    • /
    • 2024
  • This study analyzed the effectiveness of orbital change through attitude change in nano-satellites operating in low Earth orbit (LEO) without thrusters, focusing on collision avoidance maneuvers. The results revealed that changes in the satellite's cross-sectional area significantly impact its in-track direction, influenced by the aspect ratio of cross-sectional area change and mission altitude. Notably, satellites at lower altitudes demonstrated significant reduction in collision risks with a small amount of attitude change. Through this study, it is judged that the changing the cross-sectional area through attitude maneuver is a sufficiently suitable method in the operation of nano-satellites without thrusters, and is expected to contribute to improving the safety of satellite operations in the New Space era.

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

Welding Characteristics of Rapid Palatal Expander for Teeth Calibration using a Continuous Wave Nd:YAG Laser (연속파 Nd:YAG 레이저를 이용한 치아교정 급속 구개확장장치 용접특성)

  • Yoo, Young-Tae;Yang, Yun-Seok;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.40-49
    • /
    • 2010
  • The Purpose of this paper is to weld a rapid palatal expander using a continuous wave Nd:YAG laser. The rapid palatal expander has become a useful treatment method for severe maxillary transverse deficiencies and posterior crossbites. Rapid maxillary expansion is a well-established method to correct transverse maxillary deficiency and arch length discrepancy. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser beam. We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area and tension stress of a rapid palatal expander welded. Through the experimental investigation, the optimum speeds and power of laser without deficiencies of weld cross-sectional area were obtained.

Prediction of Air Pocket Pressure in Draw Die during Stamping Process (드로우 금형의 에어포켓 수축에 따르는 내부공기 압력예측에 대한 연구)

  • Koo, Tae-Kyong;Hwang, Se-Joon;Park, Warn-Gyu;Oh, Se-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.10-18
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile industry. During the stamping process, air may be trapped between the draw die and the panel. The high pressure of trapped air induces imperfections on the panel surface and creates a situation where an extremely high tonnage of punch is required. To prevent these problems, many air ventilation holes are drilled through the draw die and the punch. The present work has developed a simplified mathematical formulation for computing the pressure of the air pocket based on the ideal gas law and isentropic relation. The pressure of the air pocket was compared to the results by the commercial CFD code, Fluent, and experiments. The present work also used the Bisection method to calculate the optimum cross-sectional area of the air ventilation holes, which did not make the pressure of the air pocket exceed the prescribed maximum value.

Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique (SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석)

  • Kim, Bu-Sob;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

The Correlation between Ultrasonographic Findings of Median Nerve and Clinical Scale and Electrodiagnotic Data in Carpal Tunnel Syndrome (수근관 증후군에서 임상양상척도 및 신경전기진단 결과와 정중신경 초음파 소견의 상관관계)

  • Lee, Gyu-Ho;Kim, Sei-Joo;Yoon, Joon-Shik;Park, Byung-Kyu;Cho, Jung-Mo;Jung, Jin-Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Background: The aim of this study is to identify the correlation between ultrasonographic findings of median nerve and clinical scale and electrophysiologic data in carpal tunnel syndrome. Methods: Forty three patients (79 hands) with electrophysiologically confirmed carpal tunnel syndrome were evaluated. Clinical symptoms were examined by Historical-Objective (Hi-Ob) scale. Electrophysiologic data and Padua scale were used for severity of electrophysiology. In ultrasonographic study, cross sectional area and flattening ratio of median nerve were measured at distal wrist crease level (DWC), 1cm proximal to distal wrist crease level, and 1cm distal to distal wrist crease level. The correlation between Hi-Ob scale, electrophysiologic data and ultrasonography was measured with Spearman rank test. Results: The mean Hi-Ob scale was 2.4. Mean Padua scale was 4.0. In ultrasnonographic study, cross sectional area and flattening ratio were $0.112\;cm^2{\pm}0.025$ and $3.0{\pm}0.6$ at 1cm proximal to DWC level, $0.118{\pm}0.026\;cm^2$ and $2.9{\pm}0.4$ at DWC level, and $0.107{\pm}0.032\;cm^2$ and $3.0{\pm}0.4$ at 1 cm distal to DWC level. Hi-Ob scale was not correlated with cross sectional area and flattening ratio of median nerve. Hi-Ob scale was correlated with Padua scale positively (r=0.44) and correlated with amplitudes of CMAP and SNAP, negatively (r=-0.33; r=-0.30). Cross sectional area of median nerve was significantly correlated with Padua scale, amplitudes and latencies of CMAP and amplitudes of SNAP. Conclusions: Ultrasonographic findings of median nerve and electrodiagnostic data had statistically significant correlation. Consequently, ultrasonography could be an adjunctive method in diagnosis of carpal tunnel syndrome.