• Title/Summary/Keyword: cross-section

Search Result 4,762, Processing Time 0.039 seconds

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

An Assessment on the Hydraulic Characteristics of a Multi-dimensional Model in Response to Measurement Resolution and Spatial Interpolation Methods (지형자료의 해상도와 공간보간기법에 따른 다차원 수리모형의 유출 특성 평가)

  • Ahn, Jung-Min;Park, In-Hyeok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • Due to the increasing demand to utilize water fronts and water resource effectively, a multi-dimensional model that provides detailed hydraulic characteristics is required in order to improve the decision making process. An EFDC model is a kind of multi-dimension model, and it requires detailed 3D (3-dimensional) terrain in order to simulate the hydraulic characteristics of stream flow. In the case of 3D terrain creation, especially river reaches, measurement resolution and spatial interpolation methods affect the detailed 3D topography which uses input data for EFDC simulation. Such results make hydraulic characteristics to be varied. This study aims to examine EFDC simulation results depending on the 3D topographies derived by separate measurement resolution and spatial interpolation methods. The study area is at the confluence of the Nakdong and Kuemho Rivers and the event rain implemented was Typhoon Ewiniar in 2006. As a result, in the case of the area-elevation curve, the difference by means of the interpolation methods was significant when applying the same measurement resolution, except at 160m resolution. Furthermore, when the measurement resolution was 80m or above, the difference in a cross-section was occurred. Meanwhile, the water level changes between interpolation methods were insignificant by the measurement resolution except when the Kriging method was used for the 160m measurement data. Velocity changes emerged according to the interpolation methods when measurement resolution was 80m or above and the Kriging method resulted in a velocity that had a considerable gap in relation to the results from other methods at a measurement resolution of 160m.

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.

Evaluation of Surface Damage Possibility on Strip Roads (작업로 노면의 피해가능성 평가에 관한 연구)

  • Ji, Byoung-Yun;Jung, Do-Hyun;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.656-660
    • /
    • 2008
  • This study is carried out to minimize the damage to the forest road when locating strip roads in the future for stability of timberland after afforestation by assessing the factors that affect the damage on the forest road surface and making appropriate constructing standards. Major factors that influence damage to the strip road surface were location, longitudinal gradients, soil types, cross-section shape in order of influence on damage. it is considered that structural road factors like longitudinal gradients, road width, location factors such as construction location, slope gradients and road material like soil types were greatly related to occurrence of road surface damage. Damage occurrences in the forest road were severe at the valley, longitudinal gradients of over 24%, weathered granite soil, concave of road position, road width of over 3.0 m. stability was high at longitudinal gradients of 4~24%, road width of under 3.0 m, ridge of road position, straight slope, soil materials. The evaluation table of damage possibility on forest road was manufactured by discriminant analysis using Quantification theory(II). The results showed that the discriminant ratios was 79.4% and this table was available for forest manager.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Flow Resistance of Vertical Rib Sidewall in Open Channel (개수로 측벽 세로돌출줄눈의 흐름저항)

  • Park, Sang Deog;Ji, Min Gyu;Nam, A Reum;Woo, Tae Young;Shin, Seung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.947-956
    • /
    • 2013
  • Most of flood protection walls built on the impingement in mountain rivers have been made of concrete. It may cause flood disasters because the smooth wall surface could increase flow velocity. In this study the hydraulic experiments was carried out to evaluate the effect of one side wall with rectangular vertical ribs on flow resistance in open channel. The ratio of the pitch between vertical ribs to its depth, ${\lambda}_{nv}$, was designed so that it include the so-called d type and k type roughness. The range of Froude number, $F_r$, based on hydraulic radius is 0.81~1.12. Flow resistance in the open channel with a rib sidewall depends on the interval length of each ribs and the flow discharge. Maximum flow resistance occurred when ${\lambda}_{nv}$ is 9. In the d type roughness which ${\lambda}_{nv}$ is less than 3, the flow resistance decreases with increase of flow discharge. In the k type roughness which ${\lambda}_{nv}$ is greater than 3, the flow resistance increases with increase of flow discharge. The increments of flow resistance are especially great when ${\lambda}_{nv}$ are 9 and 12. The resistance due to vertical rib is mostly by the shape resistance and the vertical rib on one sidewall of open channel affects on the flow resistance so that the equivalent roughness heights of vertical rib may occur in scale of flow depth. Therefore the vertical ribs may be used to reduce the flow velocity and to move the location of maximum flow velocity from the rib sidewall to the centerward in a cross section of channels.

Application of Chiu's Two Dimensional Velocity Distribution Equations to Natural Rivers (Chiu가 제안한 2차원 유속분포식의 자연하천 적용성 분석)

  • Lee, Chan-Joo;Seo, Il-Won;Kim, Chang-Wan;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.957-968
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for quantitative management for water resources. Thereafter such real-time streamflow gauging methods as ultrasonic flowmeter and index-velocity are introduced recently. Since these methods calculate flowrate through entire cross-section by measuring partial velocities of it, rational and theoretical basis are necessary for accurate estimation of discharge. The purpose of the present study lies in analysis on the applicability of Chiu#s(1987, 1988) two dimensional velocity distribution equations by applying them to natural rivers and by comparing simulated velocity distributions with observed ones obtained with ADCP. Maximum and mean velocities are calculated from observed data to estimate entropy parameter M. Such isovel shape parameters as h and $\beta_i$ are estimated by object function based on least squares criterion. In case optimized parameters are applied, Chiu#s velocity distributions fairly well simulate observed ones. By using 14 simulated data sets which have relatively high correlation coefficients, properties of parameters are analyzed and h, $\beta_i$ are estimated for velocity-unknown river sections. When estimated parameters are adopted for verification, simulated velocity distributions well reproduce real ones. Finally, calculated discharges display rough agreement with measured data. The results of the present study mean that if parameters related are properly estimated, Chiu#s velocity distribution is likely to reproduce the real one of natural rivers.

Comparison of Environmental Control Characteristics of High-barrier Films for Sealed Packaging of Cultural Heritage Objects (문화재 밀폐 포장용 고차단성 필름의 보존환경 제어 특성 비교)

  • Jeong, Jaeung;Park, Insik;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.96-113
    • /
    • 2015
  • High-barrier films are used to store cultural heritage objects in a safe environment sealed from oxygen and moisture. One of the high-barrier films use populary E manufactured by Japanese company M from the 1990's. However, this product has stayed in wide use, due to dearth of research on related subjects - including studies comparing it with other similar products-, in spite of the fact that high price information about its characteristics and environmental conditions is largely lacking. This study examines the characteristics of a number of high-barrier films with the goal to establish environmental standards for safer conservation of cultural heritage objects. E by the Japanese manufacturer M is compared with four other films; an electronics packaging films by a Korean firm, a film specially produced for the purposes of experiment in this study and a zipper bag-type film. Experiments were performed to compare the properties and gas blocking ability of the films by looking at their cross-section and measuring the thickness, tensile strength, elongation, absorbance of UV and visible light, yellowing and the permeability for oxygen and vapor. Based on these experiments, there are observed changes under different environmental conditions and depending on the length of use through temparature and humidification reproucing test. The results showed that while the high-barrier film by the Korean manufacturer was suitable for use as a packaging material for cultural heritage objects, the zipper bag-type film (P) was ill-adapted for this purpose. Based on the experiments reproducing the real-world environment, the length of useful life was also determined for each.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.