• Title/Summary/Keyword: cross-flow vibration

Search Result 114, Processing Time 0.027 seconds

A Characteristics and Analysis of Aeroacoustic Noise for Appliance Fans (가전제품 홴 공력소음 특성 및 해석)

  • 전완호;김창준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1140-1145
    • /
    • 2003
  • In this paper, some dominant aeroacoustic characteristics of fans used in appliances are reviewed. The numerical attempts to analyze tile aeroacoustic noise of fans are briefly reviewed for various fans. Axial fans for refrigerator, cross flow fans fer air-conditioner, sirocco fans and turbo fans are anal: zed. The unsteady flow field, which is essential data for aeroacoustic analysis, is calculated by commercial CFD code. Acoustic pressure is calculated by Ffowcs Williams and Hawkings equation and Lowson's equation. During the analysis, dominant noise sources are identified.

  • PDF

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

A Study on the Reduction of Discrete Frequency Tones of a Cross-Flow Fan of Air-Conditioners -Studies on the Random Distribution of Fan Blades and the Skewed Stabilizers- (에어컨 용 횡단류 홴의 특정 주파수 소음 성분의 저감 대책에 관한 연구 -날개의 랜덤 배열과 경사진 스태빌라이저에 대한 연구-)

  • 구형모
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.870-878
    • /
    • 1998
  • The cross-flow fan which constitutes a fan-duct system with a stabilizer and a scroll casing is widely used in many air-ventilating and air-conditioning devices. Its ooperating points of high efficiency and loading conditions frequently induce a annoying sharp tonal component of discrete frequency on the noise spectrum, which is open called as a BPF(Blade-Passing-Frequency) noise and degrades the sound quality of the devices. this BPF tone has been one of the defects of the cross-flow fan. This study proposes two methods in order to reduce this tonal noise component, which are the random distributions of the fan blades and the skewed shapes of the stabilizer. The proposed methods are verified by a simple analytical model and are applied in manufacturing the cross-flow fan and the stabilizer samples. Some experiments are carried out to verify the reduction capability of BPF tones of above two schemes and the experimental results are analyzed. The comparison between two method is also carried out.

  • PDF

Variation of Eigenvalues of the Multi-span Fuel Rod due to Periodic Flow Disturbance by the Flow Mixer (혼합날개의 주기적 유동교란에 따른 다점지지 연료봉의 고유치변화)

  • Lee, Kang-Hee;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • Long and slender body, like a fuel rod, oscillating in axial flow can be unstabilized even by the small cross flow which can be activated by the flow mixer or turbulent generator. It is important to include these effects of flow disturbance in dynamic stability analysis of nuclear fuel rod. This work shows how eigen frequency of a multi-span fuel rod can be changed by the swirl flow, which is discretely generated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was calculated. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF

A Study on the Hydraulic Stability of Fuel Rod for the Advanced $16{\times}16$ Fuel Assembly Design ($16{\times}16$ 개량핵연료 연료봉의 수력적 안정성에 관한 연구)

  • Jeon Sang-Youn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.347-360
    • /
    • 2005
  • The fuel rod instability can be occurred because of the axial and cross flow due to the flow anomaly and/or flow redistribution in the lower core plate region of the pressurized water reactor. The fuel rod vibration due to the hydraulic instability is one of the root causes of fuel failure. The verification on the fuel rod vibration and instability is needed for the new fuel assembly design to verify the fuel rod instability. In this study, the fuel rod vibration and stability analyses were performed to investigate the effect of the grid height, fuel rod support condition, and span adjustment on the fuel rod vibration characteristics for the advanced $16{\times}16$ fuel assembly design. Based on the analysis results, the grid height and grid axial elevation of the advanced $16{\times}16$ fuel assembly design were proposed.

Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length (가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

  • PDF

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.