• Title/Summary/Keyword: cross sectional analysis

Search Result 2,471, Processing Time 0.032 seconds

A cross - sectional analysis of scientific and technological performance for the railroad R&D (철도 R&D의 과학기술적 성과에 대한 횡단면 분석)

  • Park, Man-Soo;Bang, Yoon-Seok;Kwon, Yong-Jang;Moon, Dae-Seop;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1582-1590
    • /
    • 2011
  • An analysis of the railroad industry for R&D investments has been insufficient whereas there are lots of analysis of accumulation of technology, economic performances and ripple effects for macroscopic view and other industry of R&D investments. This study decided intellectual rights, patent, and paper as common indicators of scientific and technological performances for setting up performance targets through surveying and analysis of preceding study and verified a appropriateness of scientific and technological performances for railroad R&D 11 projects which were successfully finished. Preceding study has been set up performance targets by research investments as input, but this study made a performance target by model through a cross-sectional and residual analysis of performances of railroad R&D 11 Projects in applying research investments, capital investments, inner labor cost and inner labor cost per man and research time as inputs, and verified a validity and a empirical analysis through analysis of other project.

  • PDF

Heat transfer and pressure drop with the turbulence promoter in a vertical PCB Channel (난류 발생기의 형상에 따른 수직 PCB채널에서의 열전달 및 압력손실 변화)

  • Park, Chan-U;Jang, Seung-Il;Jeong, Jong-Su;Nam, Pyeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2277-2288
    • /
    • 1996
  • This study was performed to analyze the cooling effect of heated ribs which are frequently used for cooling of electronic parts, using the numerical method. To prevent the excessive pressure drop due to turbulence promoters for the enhancement of heat transfer rate especially, the effect of the angle of turbulence promoter was investigated by the numerical analysis. Heat transfer rate with turbulence promoters with rectangular cross-section increased by 13% in average, but the coefficient of pressure drop increased by 1.68 times than that without them. In the present study, triangular cross-sectional shape turbulence promoters were suggested and numerically tested. Pressure drop of turbulence promoter with the 30 degree triangular cross-sectional shape decreased by 30% from that of rectangular cross-section promoters while heat transfer rate was almost the same. While with 4 turbulence promoters, the heat transfer rate increased by 21%, the pressure drop increased 4 times. It means that the higher capacity of cooling fan should be needed. With the triangular cross-sectional shape, the size of vortex region at the rear of promoters became considerably smaller, so pressure drop became smaller. The effect of the change of cross-sectional shape was not found in the flow pattern near the ribs, so that heat transfer characteristics in the ribs were not changed.

Layered Section Analysis for PSC Girder with Variable Cross Section Using SI Technique (SI기법을 이용한 변단면 PSC 거더의 층상화 단면해석)

  • Kim, Byeong Hwa;Park, Taehyo;Jeon, Hye-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.581-590
    • /
    • 2010
  • This study introduces a layered sectional analysis for a PSC girder with a vaiable cross section and curved tendons. To consider the shear equilibrium at a concrete layer with curved tendons, the shear stress distribution has been computed at each section. In addition, to improve the convergence to the solution, a system identification technique is newly adopted in the solution process for strain computation. To examine the feasibility of the proposed approach, a static load test has been conducted for a full scale PSC girder with variable cross section. The prediction shows a good agreement with experiment. It is seen that a uniform cross section has the same moment capacity with a variable cross section while the variable cross section has more shear capacity than the uniform cross section. It is also noted that the maximum displacement of a variable cross section is a little smaller than a uniform cross section.

Finite Element Analysis using Curvilinear Square Elements (곡선형 사각요소에 의한 유한요소 해석)

  • 이직렬;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 1985
  • This paper presents basis functions for curvilinear square elements and describes finite element analysis for coaxial cable and coaxial cross-section waveguide. On the case of coaxial cable, the more exact results is obtained by the propotional elements than by the equal elements with the same number of elements. It is found that the cutoff frequency of coaxial cross-sectional waveguide is more dependent on the inner and outer radius than the cross-sectional angle.

  • PDF

Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (II);Influence of the Cross-Sectional-Area and Opening Ratio (정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구(II);단면적 및 개도 변화)

  • Shin, C.H.;Ha, J.M.;Lee, C.G.;Her, J.Y.;Im, J.H.;Joo, W.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1454-1459
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. When it is under working, the accurate analysis of the flow properties is so difficult. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done according to the variations of the opening ratio or cross-sectional area and the detail examinations and considerations of the pressure regulator as a pipeline network elements have been carried. Finally the flow-flied distributions and critical-flow-characteristics have been presented in detail and the critical flow phenomena and the relation to the opening ratio or cross-sectional-area ratio have been studied.

  • PDF

Dynamic Analysis of Switchable Hydraulic Engine Mount with an Inertia Track and a Decoupler (유체봉입 마운트의 유로 조절에 따른 진동감쇠 성능향상)

  • Ahn, Young Kong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • This paper describes switching method of the cross-sectional area of the fluid passage way to improve the performance of a hydraulic engine mount with an inertia track and a decoupler. The mount has nonlinear dynamic characteristics depending on the vibrational frequency and amplitude. For the convenience of analysis, two linear motion equations were derived on the basis of the mechanical model according to the low-and high-frequencies. The properties of the transmissibility and dynamic stiffness derived from the equations were investigated according to switching the cross-sectional area of the inertia track and decoupler. Switching method of the cross-sectional area can be derived from the transmissibility plot. In comparison between transmissibility of passive and switchable mounts with an inertia track and a decoupler, the performance of the switchable mount is improved greatly than the passive mount. The resonant peak is remarkably reduced in the high frequency region.

Study on Vibration Characteristics in terms of Airfoil Cross-Sectional Shape by Using Co-rotational Plane Beam-Transient analysis (Co-rotational Plane beam-Transient analysis를 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.203-208
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Assuming aircraft wing as a cantilevered beam with a constant cross-sectional shape, natural frequencies of each airfoil shape was compared while varying airfoil maximum thickness and maximum camber length, using Fast Fourier Transformation(FFT). When the airfoil maximum thickness was varied, natural frequency showed peak value at 18% chord, and decreased afterwards. When the airfoil maximum camber length was varied, natural frequency either increased or decreased at 6% chord, while at 8% the natural frequency showed its maximum. Applying such trends to B-737 wing airfoil, an improved B-737_mod airfoil shape was obtained with regard to the vibration characteristics.

  • PDF

The Evaluation Model of Aggregate Distribution for Lightweight Concrete Using Image Analysis Method (이미지 분석을 이용한 경량골재 콘크리트의 골재분포 판정기법 개발)

  • Ji, Suk-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, the cross-sectional image has been acquired to evaluate the aggregate distribution affecting quality of lightweight aggregate concrete, and through the binarization method, the study is to calculate the aggregate area of upper and lower sections to develop the method to assess the aggregate distribution of concrete. The acquisition of cross-section image of concrete for the above was available from the cross-sectional photography of cleavage tension of a normal test specimen, and an easily accessible and convenient image analysis software was used for image analysis. As a result, through such image analyses, the proportion of aggregate distribution of upper and lower sections of the test specien could be calculated, and the proportion of aggregate area U/L value of the upper and lower regions of concrete cross-section was calculated, revealing that it could be used as the comprehensive index of aggregate distribution. Moreover, through such method, relatively easy image acquisition methods and analytic methods have been proposed, and this indicated that the development of modeling to assess aggregate distribution quantitatively is available. Based on these methods, it is expected that the extraction of fundamental data to reconsider the connectivity with processes in concrete will be available through quality assessment of quantitative concrete.

Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder (고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작)

  • Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

Do Trunk Muscles Affect the Lumbar Interbody Fusion Rate? : Correlation of Trunk Muscle Cross Sectional Area and Fusion Rates after Posterior Lumbar Interbody Fusion Using Stand-Alone Cage

  • Choi, Man Kyu;Kim, Sung Bum;Park, Bong Jin;Park, Chang Kyu;Kim, Sung Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.276-281
    • /
    • 2016
  • Objective : Although trunk muscles in the lumbar spine preserve spinal stability and motility, little is known about the relationship between trunk muscles and spinal fusion rate. The aim of the present study is to evaluate the correlation between trunk muscles cross sectional area (MCSA) and fusion rate after posterior lumbar interbody fusion (PLIF) using stand-alone cages. Methods : A total of 89 adult patients with degenerative lumbar disease who were performed PLIF using stand-alone cages at L4-5 were included in this study. The cross-sectional area of the psoas major (PS), erector spinae (ES), and multifidus (MF) muscles were quantitatively evaluated by preoperative lumbar magnetic resonance imaging at the L3-4, L4-5, and L5-S1 segments, and bone union was evaluated by dynamic lumbar X-rays. Results : Of the 89 patients, 68 had bone union and 21 did not. The MCSAs at all segments in both groups were significantly different (p<0.05) for the PS muscle, those at L3-4 and L4-5 segments between groups were significantly different (p=0.048, 0.021) for the ES and MF muscles. In the multivariate analysis, differences in the PS MCSA at the L4-5 and L5-S1 segments remained significant (p=0.048, 0.043 and odds ratio=1.098, 1.169). In comparison analysis between male and female patients, most MCSAs of male patients were larger than female's. Fusion rates of male patients (80.7%) were higher than female's (68.8%), too. Conclusion : For PLIF surgery, PS muscle function appears to be an important factor for bone union and preventing back muscle injury is essential for better fusion rate.