• Title/Summary/Keyword: cross sectional analysis

Search Result 2,533, Processing Time 0.025 seconds

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique (SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석)

  • Kim, Bu-Sob;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

Analysis of Laterally Loaded Pile-Bent Structure with Varying Cross-sectional Area (변단면 파일벤트 구조의 수평거동 분석)

  • Jeong, Sang-Seom;Sung, Chul-Gyu;Ko, Jun-Young;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • The load distribution and deformation of pile-bent structures are investigated using a numerical study. A numerical analysis that takes into account the effects of varying cross-sectional area was performed for different pier diameters, loading steps, and soil conditions. Through the comparison study, it is shown that the location of maximum bending moment is almost the same per each loading step, regardless of varying cross-sections. However, the member force (i.e., stress of pile material) has the largest value at the ground surface when the cross-section is changed. Based on the results obtained, it is found that the location of maximum member force influences highly the behavior of pile-bent structure with varying cross-sections for repair works.

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Community Based Cross-sectional Study on the Risk Factors of Dementia among the Elderly in a City (도시지역 노인의 치매 위험요인에 관한 단면연구)

  • Kim, Jung-Soon;Chun, Byung-Chul;Cho, Eu-Soo;Jeong, Ihn-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.4
    • /
    • pp.313-321
    • /
    • 2002
  • Objectives : To identify the risk factors of dementia among the elderly in a large city. Methods : A cross-sectional study was conducted in July 2001, with potential participants selected by stratified two stage cluster sampling of the elderly population of Keumgog dong, Busan. A total of 452 elderly people aged 65 years and over, underwent a two phase diagnostic procedure. Mini-mental State Examination-Korean (MMSE-K) and Samsung Dementia Questionnaire were used for the 1st stage, and the Clinical Dementia Rating Scale (CDR), the Bartel ADL, and IADL Index, the Korean Geriatric Depression Scale (KGDS), the Modified Hatchinski Ischemic Scale (MHIS), and other laboratory tests were used for the 2nd stage. Results : Of the 446 participants finally chosen, 45 were confirmed with dementia, and 363 as normal, with the rests not confirmed with dementia or as normal, were excluded from the analysis. According to the logistic regression analysis, the risk of dementia was significantly higher In: people aged 80 and above (OR=4.36, 95% CI=1.97-9.62), illiterate (OR=3.58, 95% CI=1.71-7.46), who had a history of strokes (OR=6.35, 95% CI=2.71-14.87), or who had 3 history of hyperlipidemia (OR=4.74, 95% CI=1.65-13.61), compared to their counterparts. Conclusions : These results suggest that efforts to prevent strokes and hyperlipidemia can significantly decrease the risk of dementia.

Association between cold-heat symptoms and sleep disturbances according to the Sasang constitution: a cross-sectional community study

  • Hyun, Min Kyung;Yoshino, Tetsuhiro
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • Objectives : Evidence supporting the cold-heat symptom and sasang constitution type, which are diagnostic items of traditional Korean medicine, is needed to manage sleep disturbances, which is a typical symptom of mibyeong (subhealth). This study examined the association between each cold-heat symptom and sleep disturbances according to each sasang constitution type. Methods : This research was a cross-sectional study of 5,793 subjects from the Korean Medicine Data Center (KDC) community cohort survey. The association between each cold-heat symptom and sleep disturbances was analyzed by logistic regression analysis adjusted for several demographic variables. Subgroup analysis was then performed for each type of sasang constitution. Results : The soeum and soyang types were 1.53 and 1.26 times more likely to have sleep disturbances than the taeum type. Sleep disturbances were associated with 'coldness of the abdomen', 'watery mouth' in the cold domain items, and 'body feverishness', 'flushed face and eye', 'thirst', and 'scanty dark urine' in the heat domain items. The soeum and soyang types were 1.55 and 1.39 times more likely to sleep less than five hours per night than the taeeum type. In addition, the associations of those showed a different pattern for each sasang constitution type. Conclusions : Sleep disturbances are associated with specific cold-heat symptoms, and the associated cold-heat symptoms differ according to the sasang constitution type. These results may help traditional medicine specialists select customized interventions for patients with sleep disturbances.

The association between dietary sodium intake and obesity in adults by sodium intake assessment methods: a review of systematic reviews and re-meta-analysis

  • Jounghee Lee;Cheongmin Sohn;Oh-Yoen Kim;Young-Min Lee;Mi Ock Yoon;Myoungsook Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.175-191
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The scientific evidence of a sodium-obesity association is limited by sodium intake assessments. Our specific aim is to synthesize the association between dietary sodium intake and obesity across the sodium intake assessments as evidenced by systematic reviews in adults. SUBJECTS/METHODS: A systematic search identified systematic reviews comparing the association of dietary sodium intakes with obesity-related outcomes such as body mass index (BMI), body weight, waist circumference, and risk of (abdominal) obesity. We searched PubMed on October 24, 2022. To assess the Risk of Bias in Systematic Reviews (ROBIS), we employed the ROBIS tool. RESULTS: This review included 3 systematic reviews, consisting of 39 unique observational studies (35 cross-sectional studies and 4 longitudinal studies) and 15 randomized controlled trials (RCTs). We found consistently positive associations between dietary sodium intake and obesity-related outcomes in cross-sectional studies. Studies that used 24-h urine collection indicated a greater BMI for those with higher sodium intake (mean difference = 2.27 kg/m2; 95% confidence interval [CI], 1.59-2.51; P < 0.001; I2 = 77%) compared to studies that used spot urine (mean difference = 1.34 kg/m2; 95% CI, 1.13-1.55; P < 0.001; I2 = 95%) and dietary methods (mean difference = 0.85 kg/m2; 95% CI, 0.1-1.51; P < 0.05; I2 = 95%). CONCLUSIONS: Quantitative synthesis of the systematic reviews has shown that cross-sectional associations between dietary sodium intake and obesity outcomes were substantially different across the sodium intake assessments. We need more high-quality prospective cohort studies and RCTs using 24-h urine collection to examine the causal effects of sodium intake on obesity.

Design and Vibratory Loads Reduction Analysis of Advanced Active Twist Rotor Blades Incorporating Single Crystal Piezoelectric Fiber Composites

  • Park, Jae-Sang;Shin, Sang-Joon;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.18-33
    • /
    • 2008
  • This paper presents design optimization of a new Active Twist Rotor (ATR) blade and conducts its aeroelastic analysis in forward flight condition. In order to improve a twist actuation performance, the present ATR blade utilizes a single crystal piezoelectric fiber composite actuator and the blade cross-sectional layout is designed through an optimization procedure. The single crystal piezoelectric fiber composite actuator has excellent piezoelectric strain performance when compared with the previous piezoelectric fiber composites such as Active Fiber Composites (AFC) and Macro Fiber Composites (MFC). Further design optimization gives a cross-sectional layout that maximizes the static twist actuation while satisfying various blade design requirements. After the design optimization is completed successfully, an aeroelastic analysis of the present ATR blade in forward flight is conducted to confirm the efficiency in reducing the vibratory loads at both fixed- and rotating-systems. Numerical simulation shows that the present ATR blade utilizing single crystal piezoelectric fiber composites may reduce the vibratory loads significantly even with much lower input-voltage when compared with that used in the previous ATR blade. However, for an application of the present single crystal piezoelectric actuator to a full scaled rotor blade, several issues exist. Difficulty of manufacturing in a large size and severe brittleness in its material characteristics will need to be examined.

Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam (가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.