• Title/Summary/Keyword: cross section data analysis

Search Result 369, Processing Time 0.035 seconds

Comparison of Anatomical Characteristics for Wood Damaged by Oak Wilt and Sound Wood from Quercus mongolica (참나무시들음병 신갈나무 피해목과 건전목의 해부학적 특징 비교)

  • JEON, Woo-Seok;LEE, Hyun-Mi;PARK, Ji-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.807-819
    • /
    • 2020
  • The aim of this study was to investigate the anatomical characteristics of Quercus mongolica infested by oak wilt disease. To analysis the anatomical characteristics of the wood specimens infested by the oak wilt, the anatomical structures of an infected wood, a dead wood, and sound wood were observed at 10-year-old intervals from 10 to 50 annual rings using both an optical and a scanning electron microscope. The fiber length was measured in units of 5 annual rings from the pith, and the diameter of the vessel element and the ratio of the vessel including the tyloses were measured for each 10 annual ring. In the cross section, on the infected and dead wood specimens, mycelium was also observed with the tyloses in the vessel. There was no signification difference between the wood specimens in the fiber length and the vessel diameter of the vessel element. The fiber length was not difference after 20-30 annual rings which is a part of juvenile wood. The average of the vessel ratio including tyloses in the infected wood was the highest. Especially, the ratio of tyloses was the highest 40-50 annual rings in the infected wood and the dead wood. Therefore, the large difference between the infested wood by oak wilt and the sound wood was the ratio of tyloses. This result can be used as a basic data to utilize the infested wood.

A Study on Flow Characteristics of the Inlet Shape for the S-Duct (S-Duct 입구 형상에 따른 유동 특성에 관한 연구)

  • Lee, Jihyeong;Choi, Hyunmin;Ryu, Minhyoung;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.109-117
    • /
    • 2015
  • Aircraft needs an inlet duct to supply the airflow to engine face. A fighter aircraft that requires low radar observability has to hide the engine face in the fuselage to reduce the Radar Cross Section(RCS). Therefore, the flow path of the inlet duct is changed into S-shape. The performance of the aircraft engine is known to be influenced by the shape and the centerline curvature of the S-Duct. In this study, CFD analysis of the RAE M 2129 S-Duct has been performed to investigate the influence of aspect ratio of inlet geometry. The performance of the S-Duct is evaluated in terms of the distortion coefficient. To simulate the flow under adverse pressure gradient better, $k-{\omega}SST$ turbulence model is employed. The computational results are validated with the ARA experimental data. The secondary flow and the flow separation are observed for all computational cases, while the semi-circular geometry has been found to produce the best results.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

Analysis of rock removal shape according to overlapping width of waterjet cutting (워터젯 절삭폭 중첩에 따른 암반제거 단면형상 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Park, Jun-Sik;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.167-181
    • /
    • 2021
  • New type of rock excavation method using a waterjet system is being developed to secure economic feasibility and to reduce vibrations during excavation. In waterjet rock excavation, overlapping of cutting width is essential for high efficiency. In this study, cutting experiments for granite specimens were performed using abrasive waterjet system according to the overlapping ratio and standoff distance. Based on the experimental results, the granite cutting performance was analyzed according to the overlapping ratio. In addition, removal shapes of the cross-section were analyzed in terms of the cutting depth, width, and volume after waterjet cutting. When the overlapping ratio is less than 58%, rock specimens are partially removed due to the insufficient overlapping ratio. However, when the overlapping ratio exceeds 67%, overcutting phenomenon is observed. For the partial overlapping ratio (i.e., 25~75%), cutting efficiency is increased in the removal volume. This study is expected to be used as the important basic data for determining the optimum overlapping ratio when the waterjet system is applied for rock excavation.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.