• Title/Summary/Keyword: cross section core

Search Result 193, Processing Time 0.032 seconds

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

A Novel Asymmetric Vertical Directional Coupler Switch (비대칭 수직 방향성 결합기 스위치)

  • Jo, Seong-Chan;Jeong, Byeong-Min;Kim, Bu-Gyun;Choe, Ji-Yeon;Hwang, Hyeong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.31-40
    • /
    • 2002
  • We propose a novel ultra-short asymmetric vertical directional coupler switch (VDCS) with high extinction ratios larger than 30㏈ composed of switching operation induced section (SOIS), extinction ratio adjusted section (ERAS), and extinction ratio enhanced section (ERES). In this VDCSs, switching operation is achieved by changing the refractive index of one core in SOIS. The improvement of extinction ratios larger than 30㏈ for both cross and bar states is achieved by controlling the asymmetry of refractive indices between both cores in ERES. After propagating through ERAS with symmetry in the structure, different extinction ratios between cross and bar states at the end of SOIS are changed to the same value. For this reason, the optimum asymmetry of the refractive indices of cores to have the maximum extinction ratios and the lengths of ERES are the same for cross and bar states. Design guidelines to achieve high extinction ratios with large tolerances are presented.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

UNCERTAINTY PROPAGATION ANALYSIS FOR YONGGWANG NUCLEAR UNIT 4 BY MCCARD/MASTER CORE ANALYSIS SYSTEM

  • Park, Ho Jin;Lee, Dong Hyuk;Shim, Hyung Jin;Kim, Chang Hyo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.291-298
    • /
    • 2014
  • This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor ($k_{eff}$), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data.

Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length (가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

  • PDF

Atomization of Annular Liquid Sheet with Core Air Flow - SMD Variation with Gas/Liquid Injection Velocity (중심 공기류를 이용한 환상 액막 미립화에 관한 연구-기/액 분사유속에 따른 입경 변화 고찰)

  • Choi, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.131-135
    • /
    • 2001
  • The atomization characteristics of an annular liquid (water) sheet of small radius with a core gas (air) flow were studied. Different sizes of annular gaps (0.2, 0.4 and 0.8 mm) were tested to find the effect of liquid sheet thickness on SMD. The inner diameter of the gas port for the core gas flow was 4 mm. Cross-section averaged SMD was measured for various liquid and gas velocities. Regions of the SMD decrease with the increase of the liquid velocity always existed regardless of the liquid sheet thickness. This attributes to the transition of the flow patterns of spray and also to the aerodynamic interaction between the atomizing gas and the ripples on the liquid sheet surface.

  • PDF