• Title/Summary/Keyword: cross section

Search Result 4,736, Processing Time 0.029 seconds

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.

Free vibrations of circular arches with variable cross-section

  • Wilson, James F.;Lee, Byoung Koo;Oh, Sang Jin
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.345-357
    • /
    • 1994
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with variable cross-sections are derived and solve numerically for quadratic arches with three types of rectangular cross sections. Frequencies, mode shapes, cross-sectional load distributions, and the effects of rotatory inertia on frequencies are reported. Experimental measurements of frequencies and their corresponding mode shapes agree closely with those predicted by theory. The numerical methods presented here for computing frequencies and mode shapes are efficient and reliable.

Characteristics of Electron Beam Extraction in Cold Cathode Type Large Cross-Sectional Pulsed Electron Beam Generator (냉음극형 대면적 펄스 전자빔 가속기의 빔인출 특성)

  • Woo, S.H.;Lee, K.S.;Lee, D.I.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1609-1611
    • /
    • 2001
  • A large cross-section pulsed electron beam generator of cold cathode type has been developed for industrial applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The conventional electron beam generators need an electron scanning beam because the small cross section thermal electron emitter is used. The electron beam of large cross-section pulsed electron beam generator do not need to be scanned over target material because the beam cross section is large by 300$cm^2$. We have fabricated the large cross-sectional pulsed electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large area electron beam in the air. The electron beam current has been investigated as a function of accelerating voltage, glow discharge current, helium pressure, distance from the exit window and radial distribution in front of the exit window.

  • PDF

CNC Extruder for Varied Section Products (CNC 제어 가변단면 압출기 개발)

  • Choi, H.J.;Lim, S.J.;Shin, H.T.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.246-249
    • /
    • 2007
  • It is very important that there are saving resource and energy in the future as well as in these day. Weight saving of structural parts, which are formed by extrusion, plays a key role in manufacturing field. Extruded aluminum parts' cross sections are constant in the axial direction by conventional extrusion method. Especially these aluminum parts used in the car need other processes to vary the cross section in the axial direction. Thus, applications of these parts are limited by high cost. if the cross section of the parts is variable by only extrusion, application of extruded aluminum parts will more increase. Therefore, a new CNC extruder which can control the section area of a car part was invented the nation's first. Using the extrusion machine, the experiment was performed to validate the workability.

  • PDF

A Study of Shape Control for Variable Section Parts in Extrusion Process (압출공정에서 가변 단면 성형을 위한 형상제어 연구)

  • Ahn, Seung-Hoon;Jang, Hong-Seok;Choi, Ho-Joon;Park, Sang-Cheul;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.234-241
    • /
    • 2009
  • The use of aluminum parts in automobile structuraI applications has increased in an effort to reduce the weight of cars and hence improve fuel economy. But Aluminum bar, I-beam and channels need other processes to vary the cross section in the axial direction. Thus, applications of these parts are limited by high cost. If the cross section of the part is variable by using only extrusion, application of extruded bar, I-beam and channels will increase in the Aluminum industries. In this paper, we propose the variable-shape extrusion process which can control the thickness of Aluminum bar. And we can calculate the speed of center ram by varying the cross section in the extrusion to control the thickness of Aluminum bar.

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Analytical method to estimate cross-section stress profiles for reactor vessel nozzle corners under internal pressure

  • Oh, Changsik;Lee, Sangmin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.401-413
    • /
    • 2022
  • This paper provides a simple method by which to estimate the cross-section stress profiles for nozzles designed according to ASME Code Section III. Further, this method validates the effectiveness of earlier work performed by the authors on standard nozzles. The method requires only the geometric information of the pressure vessel and the attached nozzle. A PWR direct vessel injection nozzle, a PWR outlet nozzle, a PWR inlet nozzle and a BWR recirculation outlet nozzle are selected based on their corresponding specific designs, e.g., a varying nozzle radius, a varying nozzle thickness and an outlet nozzle boss. A cross-section stress profile comparison shows that the estimates are in good agreement with the finite element analysis results. Differences in stress intensity factors calculated in accordance with ASME BPVC Section XI Appendix G are discussed. In addition, a change in the dimensions of an alternate nozzle design relative to the standard values is discussed, focusing on the stress concentration factors of the nozzle inside corner.

Analysis of Radar Cross Section of the Integrated Mast Module for Battleship (함정용 통합 마스트의 레이다 단면적 분석)

  • Shin, Hokeun;Lee, Seokgon;Park, Dongmin;Shin, Jinwoo;Chung, Myungsoo;Park, Sanghyun;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.584-587
    • /
    • 2017
  • In this paper, the radar cross section of the integrated mast module for battleship is analyzed. The computation program based on physical optics and physical theory of diffraction is developed and the computed results are compared with those of commercial simulator to check the accuracy of computations. The radar cross section is calculated in terms of the mast shape, incident angle, and polarization. The radar cross section can be reduced through the change of the mast slope and the chamfered mast, which can be applied to a mast with a low radar cross section.

Vibration Analysis for Circular Arches with Variable Cross-section by using Differential Transformation and Generalized Differential Quadrature (미분변환법과 일반화 미분구적법을 이용한 가변단면 원호 아치의 진동 해석)

  • Shin, Young Jae;Kwon, Kyung Mun;Yun, Jong Hak;Yoo, Yeong Chan;Lee, Ju Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.81-89
    • /
    • 2004
  • The vibration analysis of the circular arch as a member of a structure has been an important subject of mechanics due to its various applications to many industrial fields. In particular, circular arches with variable cross section are widely used to optimize the distribution of weight and strength and to satisfy special architectural and functional requirements. The Generalized Differential Quadrature Method (GDQM) and Differential Transformation Method (DTM) were recently proposed by Shu and Zou, respectively. In this study, GDQM and DTM were applied to the vibration analysis of circular arches with variable cross section. The governing equations of motion for circular arches with variable cross section were derived. The concepts of Differential Transformation and Generalized Differential Quadrature were briefly introduced. The non-dimensionless natural frequencies of circular arches with variable cross section were obtained for various boundary conditions. The results obtained using these methods were compared with those of previous works. GDQM and DTM showed fast convergence, accuracy, efficiency, and validity in solving the vibration problem of circular arches with variable cross section.