• Title/Summary/Keyword: cross reduced integration

Search Result 16, Processing Time 0.022 seconds

An accurate and efficient shell element with improved reduced integration rules

  • Zhong, Z.H.;Tan, M.J.;Li, G.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.591-605
    • /
    • 1999
  • An accurate and efficient shell element is presented. The stiffness of the shell element is decomposed into two parts with one part corresponding to stretching and bending deformation and the other part corresponding to shear deformation of the shell. Both parts of the stiffness are calculated with reduced integration rules, thereby improving computational efficiency. Shear strains are averaged on the reference surface such that neither locking phenomena nor any zero energy mode can occur. The satisfactory behaviour of the element is demonstrated in several numerical examples.

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part I. cross-sectional area

  • Lee, Yong Keun;Lee, Kangsoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • In order to improve osseo-integration of a dental implant with bone crystal we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. After bioactive material is absorbed, bone crystal can grow into holes to increase implant bonding in addition to surface integration. The larger cross section area of outlet holes showed the less values of the maximum stress, and the stress concentrations near the uppermost outlet holes were also reduced with an increasing number of outlet holes. The conclusion, that the uppermost outlet design improvement was most effective to reduce the stress concentration and improve the growth rate of bone crystal, could be drawn. After the design optimizations, Type 6-C had provided the best results in this study. The overall shape optimization studies on the shape, location, number, and so on, of the outlet holes, should be carried out further.

The Impacts of IT Infrastructure Flexibility on New Product Competitive Advantages (정보기술 기반구조의 유연성이 신제품 경쟁우위에 미치는 영향)

  • Jung, Seung-Min;Kim, Joon-S.;Im, Kun-Shin
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.1-28
    • /
    • 2007
  • The success of new product development is a key factor for getting competitive advantages. Marketing research has been investigating marketing capability, manufacturing technical capability, cross-functional integration, market knowledge competence, market orientation, and competitive environment as the key success factors of new product development. Recently, the role of IT infrastructure in enhancing new product advantage is assumed in the literature. However, the empirical studies on the role of IT infrastructure are lacking. The purpose of this study is to empirically exam the impacts of IT infrastructure on new product competitive advantage. In this study, IT infrastructure is conceptualized as the flexibility of IT infrastructure. Based on previous research, a conceptual model is established by incorporating the direct impact of IT infrastructure flexibility and its indirect impact through the key success factors on new product development. To empirically test the research model, data are surveyed from a pair of IS department and Marketing department of 92 consumer goods manufacturers. By employing PLS technique, the measurement reliability and reliability of research variables are tested and the path analysis is conducted to do the hypothesis testing. The path analysis shows that IT infrastructure flexibility has no direct effect on new product advantage, However, the indirect effect of IT infrastructure is found, which is mediated by marketing capability, manufacturing technical capability, cross-functional integration, and market orientation respectively. Hence, The flexible IT infrastructure increases cross-functional integration (H1), market orientation (H3), marketing capability (H5), and manufacturing technical capability (H6). All success factors of new product development excepts for competitive environment have a positive association with new product competitive advantages (from H10 to H14). Finally, the path from IT infrastructure flexibility to cross-functional integration, to market orientation, to market knowledge capability, and to new product advantage is found as the strongest path. These results indicate that the flexible IT infrastructure enhances information sharing with multiple departments and collaboration within a distributed innovation environment. The collaboration among departments positively affects the level of customer and competitor intelligence. The ability to obtain knowledge about customers and competitors makes firms to adapt to a changing environment quickly and to respond to customers' demands adequately. The flexible IT infrastructure also enhances the capability of organization to more rapidly respond to the changes in product design resulting in faster product development and reduced costs. In addition to, it enhances marketing capability by the two-way communications with customers and the analyses of various kinds of customer data. In brief, the finding of this study suggests that the flexible IT infrastructure allows many firms to pursue sustained new product competitive advantages. This study advances research on IT infrastructure in two important aspects. First, by Integrating marketing research and IS research, this study develops a conceptual model on the role of IT infrastructure in enhancing new product advantage. Second, it empirically finds the indirect impacts of IT infrastructure on new product advantage, which confirms the potential for the IS field to contribute to new product development research. The limitations of this study are also discussed to provide research directions for future research.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.733-762
    • /
    • 2016
  • Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

Study of the Tidal Discharge (조석출입량에 관한 조사)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

Degradation Properties of a Bi-layered Cross-linked Collagen Membrane for Localized Bone Regeneration: In Vitro and In Vivo Study

  • Park, Jin-Young;Lee, Jae-Hong;Cha, Jae-Kook;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • Purpose: (i) To evaluate the biologic properties of a bi-layered 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride-cross-linked collagen membrane (CCM) in vitro. (ii) To assess the efficacy of CCM for localized bone regeneration in vivo. Materials and Methods: Biodegradation of CCM compared to a native collagen membrane (NCM) was assessed in vitro. In vivo, twelve male New Zealand White rabbits were used. Four calvarial, circular defects (diameter 8 mm) were created in each animal. The sites were randomly allocated to i) CCM+biphasic calcium phosphate (BCP) (CCM-BCP group), ii) CCM alone (CCM), iii) BCP alone (BCP) and, iv) negative control (control). Animals were sacrificed at 2 (n=6) and 8 weeks (n=6). Outcome measures included: micro-computed tomography (μCT) analysis (total augmented volume [TAV], new bone volume) and histomorphometry (total augmented area [TAA], newly formed bone, remaining membrane thickness [RMT]). Result: CCM was more resistant to degradation than NCM. μCT analysis showed CCM-BCP (196.43±25.30 mm3) and BCP (206.23±39.13 mm3) groups had significantly (P<0.01) larger TAV than the control (149.72±12.28 mm3) after 8 weeks. Histomorphometrically, CCM-BCP group (17.75±5.97 mm2) had significantly (P<0.01) greater TAA compared to the CCM group (7.74±2.25 mm2) and the control (8.13±1.81 mm2) after 8 weeks. After 8 weeks, RMT was reduced by 67%. Conclusion: CCM can be a favorable choice of barrier membrane when performing guided bone regeneration (GBR) in localized bone defects. CCM has better resistance to degradation than the natural collagen membrane, in vitro. In vivo, CCM provides an advantageous integration of prolonged barrier function and biocompatibility for GBR.