• Title/Summary/Keyword: crop production technology

Search Result 551, Processing Time 0.038 seconds

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.

Predicting Crop Production for Agricultural Consultation Service

  • Lee, Soong-Hee;Bae, Jae-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Smart Farming has been regarded as an important application in information and communications technology (ICT) fields. Selecting crops for cultivation at the pre-production stage is critical for agricultural producers' final profits because over-production and under-production may result in uncountable losses, and it is necessary to predict crop production to prevent these losses. The ITU-T Recommendation for Smart Farming (Y.4450/Y.2238) defines plan/production consultation service at the pre-production stage; this type of service must trace crop production in a predictive way. Several research papers present that machine learning technology can be applied to predict crop production after related data are learned, but these technologies have little to do with standardized ICT services. This paper clarifies the relationship between agricultural consultation services and predicting crop production. A prediction scheme is proposed, and the results confirm the usability and superiority of machine learning for predicting crop production.

Effects of high temperature on the flowering & pod setting and rain in the seed elongation stage on the soybean growth

  • Han, Won Young;Park, Hyeon Jin;Jeon, Weon Tai;Ryu, Jong Soo;Bae, Jin Woo;Park, Jin Ki;Kwak, Kang Su;Baek, In Youl;Kang, Hang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.326-326
    • /
    • 2017
  • Climate warming is the issue on the global scale. Soybean can be seriously damaged when high temperature occurs during a reproductive stage such as the flowering and pod-setting period according to the Representative Concentration Pathway (RCP) (2021~2100) 8.5 scenarios. The weather in 2016 was very different from other years (average for 30 years from 1980 to 2010) ; the highest temperature was $33.7^{\circ}C$ which was higher $3.29^{\circ}C$ than average temperature from last 30 years and average rainfall was 26.5 mm, lower 140.9 mm than average rainfalls from other years. Especially, the highest temperature during soybean flow-ering and pod setting stage was $26.8^{\circ}C$ which was higher $0.1^{\circ}C$ and rainfall was 172.2 mm, higher 47.8 mm than other years from the first to the 20th in the October at soybean seed elongation stage. Soybean leaves were turned upside down by the drought stress during the flowering and pod-setting stage. The numbe-r of pods and seeds per unit area decreased 11.0% and 30.3% compared with the previous year, respectively. The ripening period was prolonged by 21 days because of high temperature and soil moisture contents due to the continual rainmade increase of the seed weight up to 15.6% and the yield decreased 7.1% compared to the previous year.

  • PDF

Effects of Controlled Drainage Systems on Soybean (Glycine max L.) Growth and Soil Characteristics in Paddy Fields

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen Chung;Choi, Young Dae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.134-142
    • /
    • 2017
  • Crop production in rice paddy fields is of great importance because of declining rice consumption and the low self-sufficiency ratio for field crops in Korea. A controlled drainage system (CDS) is recognized as an effective means to adjust water table (WT) levels as needed and control soil water content to improve the soil environment for optimum crop growth. The present study evaluated the effects of a CDS on soil characteristics, including soil water distribution and soybean development in paddy fields. The CDS was installed with two drain spacing (3 m and 6 m) at the experimental paddy field at the National Institute of Crop Science, Miryang, Korea. It was managed with two WT levels (0.3 m and 0.6 m) during the growing season. Soil water content, electrical conductivity and plant available nitrogen content in the soil were significantly greater in the 0.3 m WT management plots than in the 0.6 m plot and the control. At the vegetative stage, chlorophyll content was significantly lower with higher WT control because of excess soil moisture, but it recovered after the flowering stage. Soybean yield increased with WT management and the 0.6 m WT treatment produced the greatest grain yield, $3.38ton\;ha^{-1}$, which was 50% greater than that of the control. The CDS directly influenced outflow through the drains, which significantly delayed nutrient loss. The results of this study indicated that WT management by CDS can influence soil characteristics and it is an important practice for high yielding soybean production in paddy fields, which should be considered the crop growth stages for stable crop production.

Evaluation of Commercial Pheromones on the Population Dynamics of Spodoptera frugiperda (J. E. smith) and Mythimna loreyi (Duponchel) (Lepidoptera: Noctuidae)

  • Seo Yeon Hong;Hwi Jong Yi;Young Nam Yoon;Yun Woo Jang;Ki Do Park;Rameswor Maharjan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • The trapping efficacy of five commercially available sex pheromones manufactured in Korea, the Netherlands, North America, China, and Costa Rica was evaluated to determine the population dynamics of Spodoptera frugiperda and Mythimna loreyi and their relationships with the weather parameters of maize fields in Miryang, Gyeongnam Province, Korea in 2019. The results show that the sex pheromone manufactured in Costa Rica were more efficient at capturing S. frugiperda and M. loreyi than those manufactured in other countries. The lowest number of S. frugiperda moths were captured using sex pheromones manufactured in the Netherlands. We noted that more than four population peaks of both the moth species and weather parameters influenced the moth population dynamics in Miryang. A positive relationship was observed between the population of S. frugiperda and weather parameters, such as mean temperature, rainfall, and relative humidity, for sex pheromones manufactured in Korea. Furthermore, a positive relationship was recorded between the population of M. loreyi and wind speed for the sex pheromone manufactured in Korea. The results of this study suggest that the sex pheromones manufactured in Costa Rica are the best solution for the efficient capture of S. frugiperda and M. loreyi under typical weather conditions in the southern parts of Korea. In addition, the outcomes of this study are discussed in terms of population dynamics and integrated pest management for S. frugiperda and M. loreyi as alternatives to chemical management by maize producers. Further studies related to the continuous improvement in the capture efficiency of both moth species using sex pheromones are now needed.

The growth and yield changes of foxtail millet (Setaria italic L.), proso millet (Panicum miliaceum L.), sorghum (Sorghum bicolor L.), adzuki bean (Vigna angularis L.), and sesame (Sesamum indicum L.) as affected by excessive soil-water

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun;Kang, Hang Won
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.547-559
    • /
    • 2016
  • The objectives of this study were to investigate the effects of excessive soil-water on crop growth and to predict decrease of yields caused by excessive soil-water. The following five crops were selected for investigation: foxtail millet, proso millet, sorghum, adzuki bean, and sesame. These were planted in pots and a soil-water table was set to 10cm for 10 days. Crop susceptibility (CS) factors and stress-day indexes (SDI) were calculated for each crop to estimate effects of excessive soil-water. SDI models were calculated using CS and SDI data for each crop and predicted the yields of crops cultivated in paddy fields. All crops were cultivated in paddy fields with different soil water contents to evaluate the yield-SDI models. Results showed that yields decreased most when crops were affected by excessive soil-water at the early development stage. Decrease of yields was the greatest when the excessive soil-water treatment was applied at early growth stage. In the field experiment, crops from soils with the greatest soil-water content had the smallest yield, while ones from soils with the smallest soil water contents showed the greatest yields. Observed yields from the field and predicted yields from SDI models showed the least correlation for proso millet, foxtail millet, and adzuki bean and the greatest correlation for sesame. In conclusion, proso millet, foxtail millet, and adzuki bean were more susceptible to soil water than other crops, while sorghum and sesame were more suitable to cultivation in paddy fields.

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

Spatial Analyses of Soil Chemical Properties from a Remodeled Paddy Field as Affected by Wet Land Leveling

  • Jung, Ki-Yuol;Choi, Young-Dae;Lee, Sanghun;Chun, Hyen Chung;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.555-563
    • /
    • 2016
  • Uniformity and leveled distributions of soil chemicals across paddy fields are critical to manage optimal crop yields, reduce environmental risks and efficiently use water in rice cultivation. In this study, an investigation of spatial distributions on soil chemical properties was conducted to evaluate the effect of land leveling on mitigation of soil chemical property heterogeneity from a remodeled paddy field. The spatial variabilities of chemical properties were analyzed by geostatistical analyses; semivariograms and kriged simulations. The soil samples were taken from a 1 ha paddy field before and after land leveling with sufficient water. The study site was located at Bon-ri site of Dalseong and river sediments were dredged from Nakdong river basins. The sediments were buried into the paddy field after 50 cm of top soils at the paddy field were removed. The top soils were recovered after the sediments were piled up. In order to obtain the most accurate spatial field information, the soil samples were taken at every 5 m by 5 m grid point and total number of samples was 100 before and after land leveling with sufficient water. Soil pH increased from 6.59 to 6.85. Geostatistical analyses showed that chemical distributions had a high spatial dependence within a paddy field. The parameters of semivariogram analysis showed similar trends across the properties except pH comparing results from before and after land leveling. These properties had smaller "sill" values and greater "range" values after land leveling than ones from before land leveling. These results can be interpreted as land leveling induced more homogeneous distributions of soil chemical properties. The homogeneous distributions were confirmed by kriged simulations and distribution maps. As a conclusion, land leveling with sufficient water may induce better managements of fertilizer and water use in rice cultivation at disturbed paddy fields.

Present Status and Prospect of Crop Production Technology to Improve the Crop Quality and Functionality (고품질 및 기능성 증진을 위한 작물생산기술의 인구 현황과 전망)

  • Je-Cheon Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.1-14
    • /
    • 2002
  • Development of crops with high quality as well as various beneficial functions is necessary to satisfy consumers being interested in their health and to enhance a competitiveness in the international market of agricultural products. What we have achieved so far from our research on crop quality was not sufficient since we often neglected sensory feature of crop products such as eating quality but in many cases, we put more emphases on nutrient contents, physico-chemical properties, and out-appearing features of the products. Therefore developments of sensory elements and technique for evaluation with a priority given to eating quality of each of an individual crop are important and very urgent to be solved in Korea. An endeavor to develop bioactive crops is necessary and resonable but aspects of both productivity and economy with a special emphasis on the original purposes such as production of energy and nutrient for human life must be considered. The development of more concrete ideas for crop functionality is essential before any research goes further.