DOI QR코드

DOI QR Code

Evaluation of Commercial Pheromones on the Population Dynamics of Spodoptera frugiperda (J. E. smith) and Mythimna loreyi (Duponchel) (Lepidoptera: Noctuidae)

  • Seo Yeon Hong (Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hwi Jong Yi (Convergence and Innovation Strategy Team, Rural Development Administration) ;
  • Young Nam Yoon (Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Yun Woo Jang (Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ki Do Park (Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Rameswor Maharjan (Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • Received : 2022.11.03
  • Accepted : 2022.11.11
  • Published : 2022.12.01

Abstract

The trapping efficacy of five commercially available sex pheromones manufactured in Korea, the Netherlands, North America, China, and Costa Rica was evaluated to determine the population dynamics of Spodoptera frugiperda and Mythimna loreyi and their relationships with the weather parameters of maize fields in Miryang, Gyeongnam Province, Korea in 2019. The results show that the sex pheromone manufactured in Costa Rica were more efficient at capturing S. frugiperda and M. loreyi than those manufactured in other countries. The lowest number of S. frugiperda moths were captured using sex pheromones manufactured in the Netherlands. We noted that more than four population peaks of both the moth species and weather parameters influenced the moth population dynamics in Miryang. A positive relationship was observed between the population of S. frugiperda and weather parameters, such as mean temperature, rainfall, and relative humidity, for sex pheromones manufactured in Korea. Furthermore, a positive relationship was recorded between the population of M. loreyi and wind speed for the sex pheromone manufactured in Korea. The results of this study suggest that the sex pheromones manufactured in Costa Rica are the best solution for the efficient capture of S. frugiperda and M. loreyi under typical weather conditions in the southern parts of Korea. In addition, the outcomes of this study are discussed in terms of population dynamics and integrated pest management for S. frugiperda and M. loreyi as alternatives to chemical management by maize producers. Further studies related to the continuous improvement in the capture efficiency of both moth species using sex pheromones are now needed.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01419704), National Institute of Crop Science (NICS), Rural Development Administration (RDA), Republic of Korea.

References

  1. Ahmad, S. N. and N. Kamarudin. 2011. Pheromone trapping in controlling key insect pests: Progress and Prospects. Oil Palm Bulletin 62 : 12-24. 
  2. Al-Mezayyen, G. A. and M. G. Ragab. 2014. Predicting the American bollworm, Helicoverpa armigera (Hubner) field generations as influenced by heat unit accumulation. Egyptian Journal of Agricultural Research 92 : 91-99. https://doi.org/10.21608/EJAR.2014.154435. 
  3. Aloysius, S. E. 2012. Moth, Nocturnality, Noctuidae, Leucania loreyi. Commun. 
  4. Amer, A. E., A. A. El-Sayed, and M. A. Nada. 2009. Development of Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae) in relation to heat unit requirement. Egyptian Journal of Agricultural Research 87(3) : 667-674. https://agris.fao.org/agrissearch/search.do?recordID=EG2012000159.  https://doi.org/10.21608/ejar.2009.196622
  5. Angilletta Jr, M. J. 2009. Thermal adaptation: a Theoretical and Empirical Synthesis. Oxford University Press, New York, pp. 289. 
  6. Ashley, T., C. T. Elliott, A. M. White, G. J. Crimes, and A. T. Harker. 1987. Near-ambient-temperature bipolar transistor in cadmium mercury telluride. Electronics Letters. 23: 1280-1281.  https://doi.org/10.1049/el:19870887
  7. Bae, S., H. Yi, Y. N. Yoon, Y. Jang, Y. Kim, and R. Maharjan. 2019. Attraction of stink bugs to rocket traps with different combinations of wing and landing board color. Journal of Asia-Pacific Entomology 22(1) : 243-249. https://doi.org/10.1016/j.aspen.2019.01.007. 
  8. Bae, S., Y. N. Yoon, Y. Jang, H. W. Kang, and R. Maharjan R. 2017. Evaluation of an improved traps, and baits combinations for its attractiveness to hemipteran bugs in grass and soybean fields. Journal of Asia-Pacific Entomology 20(2) : 497-504. http://dx.doi.org/10.1016/j.aspen.2017.03.014. 
  9. Bajracharya, A. S. R., B. Bhat, P. Sharma, P. R. Shashank, N. M. Meshram, and T. R. Hashmi. 2019. First record of fall armyworm Spodoptera frugiperda (J.E. Smith) from Nepal. Indian J. Entomol. 81(4) : 635-639. https://doi.org/10.5958/0974-8172.2019.00137.8. 
  10. Baker, T. C., and J. J. Heath. 2005. Pheromones: function and use in insect control, in: Gilbert, L., K. Iatrou, S. S. Gill (Eds.), Comprehensive molecular insect science. Vol 6, Elsevier, NY, pp. 407-459. 
  11. Barfield, C. S. and T. R., Ashley. 1987. Effects of corn phenology and temperature on the life cycle of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 70(1) : 110-116. https://doi.org/10.2307/3495097. 
  12. Baudron, F., M. A. Zaman-Allah, I. Chaipa, N. Chari, and P. Chinwada. 2019. Understanding the factors conditioning fall armyworm (Spodoptera frugiperda J.E. Smith) infestation in African smallholder maize fields and quantifying its impact on yield: A case study in Eastern Zimbabwe. Crop Protection 120 : 141-150. https://doi.org/10.1016/j.cropro.2019.01.028. 
  13. Boo, K. S. and C. H. Jung. 1998. Field tests of synthetic sex pheromone of the apple leafminer moth, Phyllonorcter ringoniella. Journal of Chemical Ecology. 24 : 1939-1947. https://doi.org/10.1023/A:1020713023910 
  14. Campion, D. G. 1983. Pheromones for the control of insect pests in Mediterranean countries. Crop Protection 2 : 3-16. https://doi.org/10.1016/0261-2194(83)90021-2. 
  15. Chapman, J. W., T. Williams, A. M. Marto Anez, J. Cisneros, P. Caballero, and R. D. Cave. 2000. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behavioral Ecology and Sociobiology 48 : 321-327. https://doi.org/10.1007/s002650000237. 
  16. Cruz, I., M. Figueiredo, R. Silva, I. Silva, C. Paula, and J. Foster. 2012. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae)) larvae in maize. International Journal of Pest Management 58(1) : 83-90. https://doi.org/10.1080/09670874.2012.655702. 
  17. Dahi, H. F. 2007. Using heat accumulation and sex pheromone catches to predict the American bollworm, Helicoverpa armigera Hub. field generations. Journal of Agricultural Science Mansoura University 32 : 3037-3044. 
  18. Danilevskii, A. S. 1965. Photoperiodism and seasonal development of insects. Oliver and Boyd LTD, Edinburg and London, p.283. 
  19. El-Sherif, S. I. 1972. On the biology of Leucania loreyi, dup. (Lepidoptera, Noctuidae). Journal of Applied Entomology 71 : 104-111. https://doi.org/10.1111/j.1439-0418.1972.tb01725.x. 
  20. Epsky, N. D., W. L. Morrill, and R. W. Mankin. 2008. Traps for capturing insects, in: Capinera, J.L. (eds.), Encyclopedia of Entomology, Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_2523. 
  21. Evenden, M. L. and R. Gries. 2010. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola. Journal of Economic Entomology 103(3) : 654-661. https://doi.org/10.1603/EC09339. 
  22. Ge, S. S., L. M. He, W. He, R. B. Xu, X. T. Sun, and K. M. Wu. 2019. Determination on moth flight capacity of Spodoptera frugiperda. Plant Protection 45 : 28-33. 
  23. Goergen, G., P. L. Kumar, S. B. Sankung, A. Togola, and M. Tamo. 2016. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 11(10) : e0165632. 10.1371/journal.pone.0165632. 
  24. Groot, A. T., M. Marr, G. Scholf, S. Lorenz, and A. Svatos. 2008. Host strain specific sex phenomenon variation in Spodoptera frugiperda. Frontiers in Zoology 5(20). https://doi.org/10.1186/1742-9994-5-20. 
  25. Guerrero, S., J. Brambila, and R. L. Meagher. 2014. Efficacies of four pheromone-baited trapsin capturing male Helicoverpa (Lepidoptera: Noctuidae) moths in Northern Florida. Florida Entomologist 97(4) : 1671-1678. https://doi.org/10.1653/024.097.0441. 
  26. Guo, S. J., S. M. Li, L. P. Ma, and X. N. Zhuo. 2003. Research about biological characteristics and damage laws of Leucania loreyi. Journal of Henan Agricultural Science 9 : 37-39. 
  27. Hagstrum, D. W. and Hagstrum, W. R. 1970. A simple device for producing fluctuating temperatures with an evaluation of the ecological significance of fluctuating temperatures. Annals of the Entomological Society of America. 63 : 1385-1389. https://doi.  https://doi.org/10.1093/aesa/63.5.1385
  28. Hand, S. C., N. W. Ellis, and J. T. Stoakley. 1987. Development of a pheromone monitoring system for the winter moth, Operophtera brumata (L.), in apples and in sitka spruce. Crop Protection. 6: 191-196. https://doi.org/10.1016/0261-2194(87)90010-Xorg/10.1093/aesa/63.5.1385. 
  29. Harrison, R. D., C. Thierfelder, F. Baudron, P. Chinwada, C. Midega, U. Schaffner, and J. van den Berg. 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management 243 : 318-330. https://doi.org/10.1016/j.jenvman.2019.05.011. 
  30. Hirai, K. 1975. The influence of rearing temperature and density on the development of two Leucania species, M. loreyi dup. and L. separata walker (Lepidoptera: Noctuidae). Applied Entomology Zoology 10 : 234-237. 
  31. Howe, R. W. 1967. Temperature effects on embryonic development in insects. Annual Review of Entomology. 12 : 15-42. https://doi.org/10.1146/annurev.en.12.010167.000311. 
  32. Howe, R. W. and J. E. Currie. 1964. Some laboratory observations on the rates of development, mortality and oviposition of several species of bruchidae breeding in stored pulses. Bulletin of Entomological Research. 55(33) : 437-477. https://doi.org/10.1017/S0007485300049580. 
  33. Howse, P. E., I. D. R. Stevens, and O. T. Jones. 1998. Insect Pheromones and their Use in Pest Management. Chapman and Hall, UK. 
  34. Jaworski, T. and J. Hilszczanski. 2013. The effect of temperature and humidity changes on insect development and their impact on forest ecosystems in the context of expected climate change. Forest Research Paper 74(4) : 345-355. https://doi.org/10.2478/frp-2013-0033. 
  35. Jiang, Y. Y., G. G. Li, J. Zeng, and J. Liu. 2014. Population dynamics of the armyworm in China: a view of the past 60 years research. Chinese Journal of Applied Entomology 51 : 890-898. 
  36. Johnson, S. J. 1987. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. International Journal of Tropical Insect Science 8(4-5-6) : 543-549. https://doi.org/10.1017/S1742758400022591. 
  37. Jung, C. R., Y. J. Park, and K. S. Boo. 2003. Optimal sex pheromone composition for monitoring Spodoptera exigua (Lepidoptera: Noctuidae) in Korea. Journal of Asia-Pacific Entomology 6(2) : 175-182. 
  38. Jung, J. K., B. Y. Seo, C. G. Park, S. J. Ahn, J. I. Kim, and J. R. Cho. 2015. Timing of diapause induction and number of generations of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in Suwon, Korea. Korean Journal of Applied Entomology 54(4) : 383-392. https://doi.org/10.5656/KSAE.2015.10.0.057. 
  39. Jung, J. K., B. Y. Seo, J. R. Cho, and Y. Kim. 2013. Monitoring of Mythimna separata adults by using a remote-sensing sex pheromone trap. Korean Journal of Applied Entomology 52(4) : 341-348. https://doi.org/10.5656/KSAE.2013.10.0.058. 
  40. Jung, J. K., E. Y. Kim, I. H. Kim, and B. Y. Seo. 2020. Species identification of noctuid potential pests of soybean and maize, and estimation of their annual adult emergence in Suwon, Korea. Korean Journal of Applied Entomology 59(2) : 93-107. https://doi.org/10.5656/KSAE.2020.03.0.013. 
  41. Jung, J. K., J. T. Youn, D. J. Im, J. H. Park, and U. H. Kim. 2005. Soybean seed injury by the bean bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae) at reproductive stage of soybean (Glycine max Linnaeus). Korean Journal of Applied Entomology 44(4) : 299-306. 
  42. Katherine, A., D. Parys, and R. Hall. 2017. Field evaluation of potential pheromone lures for Lygus lineolaris (Hemiptera: Miridae) in the Mid-South. Insect Science 17(1) : 25. https://doi.org/10.1093/jisesa/iew109. 
  43. Keathley, C. P., L. L. Stelinski, and S. L. Lapointe. 2013. Attraction of a native Florida leafminer, Phyllocnistis insignis (Lepidoptera: Gracillariidae), to pheromone of an invasive Citrus leafminer, P. citrella: Evidence for mating disruption of a native non-target species. Florida Entomologist 96(3) : 877-886. https://doi.org/10.1653/024.096.0323. 
  44. Lamb, R. J. 1992. Development rate of Acyrthosiphion pisum (Homoptera, Aphididae) at low temperatures; implication for estimating rate parameters for insects. Environmental Entomology 21(1) : 10-19. https://doi.org/10.1093/ee/21.1.10. 
  45. Lee, G-S., B. Y. Seo, J. Lee, H. Kim, J. H. Song, and W. Lee. 2020. First Report of the Fall Armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera, Noctuidae), a New Migratory Pest in Korea. Korean Journal of Applied Entomology 59(1) : 73-78. https://doi.org/10.5656/KSAE.2020.02.0.006. 
  46. Luginbill, P. 1928. The fall armyworm. USDA Technological Bulletin. 34 : 91. 
  47. Ma, J., Y. P. Wang, M. F. Wu, B. Y. Gao, J. Liu, G. S. Lee, A. Otuka, and G. Hu. 2019. High risk of the fall armyworm invading Japan and the Korean Peninsula via overseas migration. Journal of Applied Entomology 143(9) : 911-920. https://doi.org/10.1111/jen.12679. 
  48. Macaulay, E. D. M., G. W. Dawson, X. Liu, and J. A. Pickett. 1986. Field performance of synthetic diamondback moth pheromones. Aspects Applied Biology. 12 : 105-116. 
  49. Maharjan, R. and C. Jung. 2011. Rearing methods of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Korean Journal of Soil Zoology. 15 : 53-57. 
  50. Maharjan, R. and C. Jung. 2016. Thermal requirements and development of the Korean population of the potato leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae). Journal of Asia-Pacific Entomology 19(3) : 595-601. http://dx.doi.org/10.1016/j.aspen.2016.06.001. 
  51. Maharjan, R., J. Ahn, C. Park, Y. Yoon, Y. Jang, H. Kang, and S. Bae. 2017. Effects of temperature on development of the azuki bean weevil, Callosobruchus chinensis (Coleoptera: Bruchidae) on two leguminous seeds. Journal of Stored Products Research 72 : 90-99. http://doi.org/10.1016/j.jspr.2017.04.005. 
  52. Malo, E. A., L. Cruz-Lopez, J. Valle-Mora, A. Virgen, J. A. Sanchez, and J. C. Rojas. 2001. Evaluation of commercial pheromone lures and traps for monitoring male fall armyworm (Lepidoptera: Noctuidae) in the coastal region of Chiapas, Mexico. The Florida Entomologist 84(4) : 659-664. https://doi.org/10.2307/3496398. 
  53. Montezano, D. G., A. Specht, D. R. Sosa-Gomez, V. F. Roque-Specht, J. C. Sousa-Silva, S. V. Paula-Moraes, J. A. Peterson, and T. E. Hunt. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26(2) : 286-300. https://doi.org/10.4001/003.026.0286. 
  54. Mullen, M. A. and A. K. Dowdy. 2001. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). Journal of Stored Products Research 37 : 231-235. https://doi.org/10.1016/S0022-474X(00)00024-2. 
  55. Plessis, H. D., M. L. Schlemmer, and J. Van den Berg. 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 11(4) : 228. 10.3390/insects11040228. 
  56. Potter, M. F., R. T. Huner, and T. F. Wasion. 1981. Heat unit requirements for emergence of overwintering tobacco budworm, Heliothis virescense (F.) 1, in Arizona 2. Environmental Entomology 10(4) : 543-545. https://doi.org/10.1093/ee/10.4.543. 
  57. Prasanna, B. M., J. E. Huesing, R. Eddy, and V. M. Peschke. 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management, 1st ed. CDMX: CIMMYT, Mexico. 
  58. Ragab, M. G. 2009. Effect of accumulated heat units and cotton fruit structures on larval infestation of Helicoverpa armigera (Hub.) on cotton and cowpea under different planting systems. Bulletin of the Entomological Society of Egypt 86 : 249-265. 
  59. Reddy, G.V., G. Shrestha, D. A. Miller, and A. C. Oehlschlager. 2018. Pheromone-trap monitoring system for pea leaf weevil, Sitona lineatus: Effects of trap type, lure type and trap placement within fields. Insects. 9(3) : 75. https://doi.org/10.3390/insects9030075. 
  60. Regniere, J., R. St-Amant, and P. Duval. 2012. Predicting insect distributions under climate change from physiological responses: Spruce budworm as an example. Biological Invasions 14 : 1571-1586. https://doi.org/10.1007/s10530-010-9918-1. 
  61. Ridgway, R. L., R. M. Silverstein, and M. N. Inscoe. 1990. Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York. 
  62. Roda, A. L., B. Julieta, B. Jorge, E. Xavier, and K. Cheslavo. 2015. Efficiency of trapping systems for detecting Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Economic Entomology 108(6) : 2648-2654. https://doi.org/10.1093/jee/tov248. 
  63. Roger, G. A., D. M. Kathleen, and M. L. Lorraine. 1989. Effectiveness and selectivity of sex pheromone lures and traps for monitoring fall armyworm (Lepidoptera: Noctuidae) adults in Connecticut sweet corn. Journal of Economic Entomology 82(1) : 285-290. https://doi.org/10.1093/jee/82.1.285. 
  64. Santanu, B., M. Parikshit, B. Deepa, and P. Rudra. 2017. Selective detection of female sex pheromone of Helicoverpa armigera by an eminent surface functionalized template. Protocol Exchange https://doi.org/10.1038/protex.2017.057. 
  65. SAS Institute. 2000. SAS/ STAT user's guide: statistics (Cary, N.C). 
  66. Shanower, T. G., F. Schulthess, and N. A. Bosque-Perez. 1993. The effect of larval diet on the growth and development of Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). International Journal of Tropical Insect Science 14(5-6) : 681-685. https://doi.org/10.1017/S1742758400018117. 
  67. Sharanabasappa, D., C. M. Kalleshwaraswamy, R. Asokan, H. M. Swamy, M. S. Maruthi, H. B. Pavithra, K. Hegde, S. Navi, S. T. Prabhu, and G. Goergen. 2018. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Horticultural Ecosystem 24(1) : 23-29. https://hdl.handle.net/10568/103519.  10568/103519
  68. Sparks, A. N. 1979. A review of the biology of the fall armyworm. Florida Entomologist 62(2) : 82-87. https://doi.org/10.2307/3494083. 
  69. Spears, L. R. and R. A. Ramirez. 2015. Learning to love leftovers: Using by-catch to expand our knowledge in entomology. American Entomologist 61(3) : 168-173. https://doi.org/10.1093/ae/tmv046. 
  70. Tahhan, O., S. Sithanantham, G. Hariri, and W. Reed. 1982. Heliothis species infesting chickpeas in northern Syria. International Chickpea Newsletter 6 : 21. http://oar.icrisat.org/7452/1/ICN-6_21-22_1982.pdf. 
  71. Taman, F. A. 1990. Pheromone trapping of cotton insects in relation to some climatic factors. Alexandria Science Exchange 11: 37-53. 
  72. Tobin, P. C., S. Nagarkatti, and M. C. Saunders. 2003. Phenology of Grape berry moth (Lepidoptera: Tortricidae) in cultivated grape at selected geographic locations. Environmental Entomology 32(2) : 340-346. https://doi.org/10.1603/0046-225X32.2.340. 
  73. Walker, G. P, A. R. Wallace, R. Bush, F. H. Macdonald, and D. M. Suckling. 2003. Evaluation of pheromone trapping for prediction of diamondback moth infestations in vegetable brassicas. New Zealand Plant Protection 56 : 180-184. https://doi.org/10.30843/nzpp.2003.56.6039. 
  74. Witzgall, P., P. Kirsch, and A. Cork. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36(1) : 80-100. https://doi.org/10.1007/s10886-009-9737-y. 
  75. Zilahi-Balogh, G. M. G., N. D. P. Angerilli, J. H. Borden, M. Meray, M. Tulung, and D. Sembel. 1995. Regional differences in pheromone responses of diamondback moth in Indonesia. International Journal of Pest Management 41(4) : 201-204. https://doi.org/10.1080/09670879509371949.