• Title/Summary/Keyword: crop injury

Search Result 259, Processing Time 0.02 seconds

Ethylene Production and Accumulation in Leaf Sheath and Its Relation to Tillering Suppression of Deep-Irrigated Rice Plants

  • Myung Eul-Jae;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • The deep irrigation of rice plants brings about some beneficial effects such as reduced tiller production which results in the formation of bigger panicles, prevention of chilling injury, reduced weed growth, etc. The present study was carried out to examine the involvement of ethylene in the suppression of tiller production due to deep water irrigation in rice (cv. Dongjinbyeo). The ethylene production was induced in leaf sheath within 24 hours after the deep water irrigation and has increased even until 30 days after the treatment, recording 4.5-fold increase as compared to the shallow-irrigated rice plants. In the deep water irrigated rice plants, ethylene was accumulated to a high concentration in the air space of submerged leaf sheath as the irrigated water deterred the diffusion of ethylene out of the leaf sheath and ethylene biosynthesis was accelerated by the deep irrigation as well. The ethylene concentration recorded 35-fold increase in the deep-irrigated rice plants for 35 days. The tiller production was reduced significantly by the deep irrigation with water, the tiller bud, especially tertiary tiller bud differentiation being suppressed by the deepwater irrigation treatment, whereas the rice plants deep-irrigated with solutions containing $10^{-5}$ M or $10^{-6}$ M silver thiosulfate (STS), an action inhibitor of ethylene, showed the same or even higher production of tillers than those irrigated shallowly with water. This implies that the ethylene is closely linked with the suppression of tiller production due to deep water irrigation. In conclusion, ethylene, which was induced by hypoxic stress and accumulated in the leaf sheath due to submergence, played a key role in suppressing the tiller production of the deepwater irrigated rice.

Effects of Abscisic acid on Ozone Injury in Rice (벼의 오존피해 경감에 미치는 ABA의 효과)

  • 김주령;손태권;조정환;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.174-185
    • /
    • 2002
  • This study was carried out to investigate the effects or abscisic acid (ABA), three concentrations, on growth, activities of antioxidant-related enzymes and grain yield of two rice plants (Oryza sativa L. cv. Hwamyungbyeo and cv. Namchunbyeo) exposed to ozone (0.150 ppm) for 6 hours a day for 30 days. The leaf chlorop0hyll contents, plant height, and tillering numbers were not shown significant difference. But ABA 10$^{-5}$ M treatment affects to growth slightly. In all concentrations of ABA, superoxide dismutase (SOB) activities were increased at tillering stage of Namchunbyeo which was exposed to ozone. It is considered that the optimum concentration of ABA is 10$^{-5}$ M for minimizing loss of grain yield loss.

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Radioprotective Potential of Panax ginseng: Current Status and Future Prospectives (고려인삼의 방사선 방어효과에 대한 연구현황과 전망)

  • Nam, Ki-Yeul;Park, Jong-Dae;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.287-299
    • /
    • 2011
  • Pharmacological effects of Panax ginseng have been demonstrated in cardiovascular system, endocrine secretion and immune system, together with antitumor, anti-stress and anti-oxidant activities. Modern scientific data show protective effect of ginseng against bone marrow cell death, increased survival rate of experimental animals, recovery of hematopoietic injury, immunopotentiation, reduction of damaged intestinal epithelial cells, inhibition of mutagenesis and effective protection against testicular damages, caused by radiation exposure. And also, ginseng acts in indirect fashion to protect radical processes by inhibition of initiation of free radical processes and thus reduces the radiation damages. The research has made much progress, but still insufficient to fully uncover the action mechanism of ginseng components on the molecule level. This review provides the usefulness of natural product, showing no toxic effects, as an radioprotective agent. Furthermore, the further clinical trials on radioprotection of ginseng need to be highly done to clarify its scientific application. The effective components of ginseng has been known as ginsenosides. Considering that each of these ginsenosides has pharmacological effect, it seems likely that non-saponin components might have radioprotective effects superior to those of ginsenosides, suggesting its active ingredients to be non-saponin series. These results also show that the combined effects of saponin and non-saponin components play an important role in the radioprotective effects of ginseng.

Influence of Nitrogen Application and Shading on the Sterile-type Cold Injury in Rice (질소시비와 차광이 벼 장해형냉해에 미치는 영향)

  • Kim, Hee-Dong;Tetsuo, Satake;Kim, Young-Ho;Kim, Byeong-Hyeon;Ree, Dong-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.252-260
    • /
    • 1989
  • This experiment was carried out to clarify the causes of sterility in terms of pollination characteristics for the sterile-type cold damage as influenced by amount of nitrogen application and shading conditions in rice plants. The results obtained are as follows: The number of young microspore per anther was not changed greatly by amount of nitrogen application. The number of ripened pollen grains per anther decreased according to increase in nitrogen application and shading degree, but the anther length and stigma length were not significantly affected by those factors. The number of pollen grains on stigma decreased by intense shading. The fertility decreased with increased nitrogen application and intensified shading. The elongation of auricle distance per day was less in less nitrogen application and intense shading. The internode length of the first and the second from the top were shortened with intense shading, but that of the fourth was elongated. The number of spikelet per panicle decreased with increase in shading intensity.

  • PDF

Physiological Response of Barley to Salt Stress at Reproductive Stage (보리 생식생장기의 염(NaCl)처리가 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Park, Jong-Hwan;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.687-692
    • /
    • 1997
  • The barley grown in pot-soil was treated with the NaCl solution of -20 bar in osmotic potential for 10 days, varying the time of treatment: from 20th day before heading; from 10th day before heading and the time of heading. The greatest injury was observed in the case of salt stress at heading or at 10th day before heading: Culm length decreased by 87% : the number of spikes per plant by 82% ; the number of grain per spike by 92% : 1, 000-grain weight by 94% ; yield per pot by 75%. The results also greatly varied depending upon the cultivars and the time of salt stress. Salt stress at the time of heading or at 10th day before heading remarkably decreased yield and yield components. And in terms of grain yield the salt resistance was high in the order of Baegdong, Albori, Hyangmaeg, Olbori and Durubori.

  • PDF

Physiological Studies on Injuries of Cool Weather in Rice Plant I. Effect of Heading Date and Physiological Characteristics of Boron and Phosphorus Application Under the Cold Water Temperature in Rice Plant (수도의 냉해에 대한 생리학적 연구 제1보 저수온하에서 붕소 및 인산시용이 수도의 출수 및 생리적 특성에 미치는 영향)

  • Cho, D.S.;Heu, H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.76-80
    • /
    • 1983
  • In order to investigate the effect of boron and phosphorus for reduction of cold injury of rice, this experiment was undertaken by pot trial. Two levels of phosphorus and 6 levels of boron were applied once at the three stages such as tillering, panicle formation and meiosis stage. Cold water was irrigated to maintain cool temperature ranging 15 to $18^{\circ}C$ from panicle formation stage. It was shown a tendency that three to seven days of early heading were resulted by the 3, 5 and 10kg of boron application per 10 are. The ripening ratio and physiological root activity was rather slightly increased in the above boron levels.

  • PDF

Study on Forage Cropping System Adapted to Soil Characteristics in Reclaimed Tidal Land (간척지 토양특성에 알맞은 사료작물 작부체계 연구)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Kim, Sun;Jeong, Jae-Hyeok;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Sang-Bok;Kim, Young-Doo;Kim, Si-Ju;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.385-392
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal and Gyehwa region of Saemangum reclaimed tide land from October, 2009 to October, 2011. Whole crop barley (WCB), Rye, Italyan-ryegrass (IRG) as winter crops and Corn, Sorghum${\times}$sudangrass hybrid (SSH) as summer crops were cultivated. Soil chemical properties, nutrient uptake, feed value, growth and yield were examinated. The testing soil was showed saline alkali soil where the contents of organic matter, available phosphate and exchangeable calcium were very low, while exchangeable sodium and magnesium were higher. Changes of soil salinity during the growing season of forage crops were less than 0.2%, and the growth of forage crops was not affected by salt injury. Standing rates of winter crops were higher in the order of Rye, WCB, and IRG, while the dry matter yield of winter crops was higher in the order of IRG, Rye and WCB. The highest crude protein (CP) content was recorded in IRG, and total digestive nutrients (TDN) contents were increased in the order of WCB, IRG, and Rye. The TDN content was higher in corn, whereas other feed value was higher in SSH. The content of mineral nutrients on stem, leaf and grain in IRG, Corn were high. After experiment pH was lowed, contents of exchangeable magnesium, sodium and organic matter were decreased while contents of total nitrogen, available phosphate and exchangeable potassium, calcium were increased. Winer crops and summer crops after continually cultivating in cropping system, fresh matter yield increased, compared to WCB-Corn (74,740 kg $ha^{-1}$), IRG-SSH 10%, IRG-Corn 7%, Rye-SSH 6%, Rye-Corn and WCB-SSH 3%. Dry matter yield increased, compared to WCB-Corn (20,280 kg $ha^{-1}$), IRG-SSH 7%, Rye-SSH 6%, IRG-Corn/Rye-Corn/WCB-SSH 3%. The TDN yield increased, compared to WCB-Corn (13,830 kg $ha^{-1}$), IRG-SSH 2%, WCB-SSH and IRG-Corn 1%. Therefore, we suggest that the crop combination of IRG-SSH and WCB-SSH would be preferred for silage stable production.

Studies on the Chilling Injury of Rice seedlings. 1. Characterization of Chilling Injury & Recovery Different Leaf Stages (수도의 유초기 냉해에 관한 연구 1. 유묘기 엽령별 냉해발현 및 회복양태)

  • Kwon, Y.W.; Kim, J.H.;Ahn, S.B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.11-24
    • /
    • 1979
  • To characterize elastic and plastic chilling injury, rice seedlings grown at 28/$16^{\circ}C$ day/night temp. under 20K lux (13hrs.) in a phytotron were subjected to a 11/$6^{\circ}C$, 20K lux condition for 2, 4, 6 or 8 days at 1, 2, 3, 4 or 5th leaf-stage, respectively, followed by further growth under 28/$16^{\circ}C$condition till 30th day after seeding. Japonica variety Jinheung and Chulwon No.1 survived almost 100% without any significant , discoloration and death of leaves due to chilling even under the chilling of 8 days at all seedling ages tested. Tongil and Yushin, varieties from Indica x Japonica cross, showed increasing discoloration of leaves and death of plants with increase in chilling intensity. The longest chilling duration shown seedling death less than 5% was 4, 6, 1, 4, 8 days for Tongil, and 6, 6, 1, 2, 2, days for Yushin at 1, 2, 3, 5th leaf-stage, respectively. The degree of discoloration and death of leaves or suppression of height growth was not explicitly related to seedling death or the dry weight reduction. The degree of seedling death or dry weight reduction could differentiate chilling tolerance of varieties and seedling ages, but somewhat differently. Reduction in dry weight due to chilling occurred even without any visible injury or seedling death. These suggest that both the degree of seedling death and reduction in dry weight should be considered in the test of varieties for chilling tolerance. Combined evaluation of seedling death and dry weight reduction indicated the most susceptible seedling age to chilling injury to be 1 to 2nd leaf-stage for Jinheung, 2 to 3rd leaf-stage for Chulwon No.1, 3rd leaf- stage for Tongil and Yushin, respectively.

  • PDF

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF