• Title/Summary/Keyword: crop growth model

Search Result 250, Processing Time 0.022 seconds

A REPRESENTATIVITY TEST OF THE SURFACE SOLAR INSOLATION THROUGH SATELLITE OBSERVATION

  • Yeom, Jong-Min;Park, Youn-Young;Kim, Young-Seup;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.655-659
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km ${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$3, 5${\times}$5, 7${\times}$7, 9${\times}$9, 10${\times}$10, 11${\times}$11, 13${\times}$13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

  • PDF

A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation

  • Yeom, Jong-Min;Han, Kyung-Soo;Park, Youn-Young;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.389-396
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

Predicting Regional Soybean Yield using Crop Growth Simulation Model (작물 생육 모델을 이용한 지역단위 콩 수량 예측)

  • Ban, Ho-Young;Choi, Doug-Hwan;Ahn, Joong-Bae;Lee, Byun-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.699-708
    • /
    • 2017
  • The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

Plant abscission: An age-old yet ongoing challenge in future agriculture (탈리 신호전달의 메커니즘에 대한 최신 연구동향 및 미래 농업의 적용 방안)

  • Jinsu Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.142-154
    • /
    • 2023
  • Plant abscission is a natural process in which plant organs or tissues undergo detachment, a strategy selected by nature for the disposal of nonessential organs and widespread dissemination of seeds and fruits. However, from an agricultural perspective, the abscission of seeds or fruits represents a major factor that reduces crop productivity and product quality. Therefore, during the crop domestication process in traditional agriculture, mutants exhibiting suppressed abscission were selected and crossbred, thereby enabling the production of modern crop varieties such as rice, tomatoes, canola, and soybeans. These crops possess a unique trait of retaining ripe fruits or seeds in contrast to disposal via abscission. During the previous century, research on quantitative trait loci along with genetic and molecular biological studies on Arabidopsis thaliana have elucidated various cell biological mechanisms, signaling pathways, and transcription regulators involved in abscission. Additionally, it has been revealed that various hormone signals, which are involved in plant growth, play crucial roles in modulating abscission activity. Researchers have developed several chemical treatments that target these hormones and signal transduction pathways to enhance crop yields. This review aimed to introduce the previously identified signal transduction pathways and pivotal regulators implicated in abscission activity. Moreover, this review will discuss the future direction of research required to investigate crop abscission mechanisms for their potential application in smart farming and other areas of agriculture, as well as areas within model systems that require extensive research.

Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model (작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가)

  • Young Sang, Joh;Jaemin, Jung;Shinwoo, Hyun;Kwang Soo, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.256-266
    • /
    • 2022
  • Empirical models including the Angstrom-Prescott (AP) model have been used to estimate solar radiation at sites, which would support a wide use of crop models. The objective of this study was to estimate two sets of solar radiation estimates using the AP coefficients derived for climate zone (APFrere) and specific site (APChoi), respectively. The daily solar radiation was estimated at 18 sites in Korea where long-term measurements of solar radiation were available. In the present study, daily solar radiation and sunshine duration were collected for the period from 2012 to 2021. Daily weather data including maximum and minimum temperatures and rainfall were also obtained to prepare input data to a process-based crop model, CERES-Rice model included in Decision Support System for Agrotechnology Transfer (DSSAT). It was found that the daily estimates of solar radiation using the climate zone specific coefficient, SFrere, had significantly less error than those using site-specific coefficients SChoi (p<0.05). The cumulative values of SFrere for the period from march to September also had less error at 55% of study sites than those of SChoi. Still, the use of SFrere and SChoi as inputs to the CERES-Rice model resulted in slight differences between the outcomes of crop growth simulations, which had no significant difference between these outputs. These results suggested that the AP coefficients for the temperate climate zone would be preferable for the estimation of solar radiation. This merits further evaluation studies to compare the AP model with other sophisticated approaches such as models based on satellite data.

Growth Characteristics and Yield According to Differential Storage Temperature of Southern Ecotype Allium sativum var. 'Namdo' for Crop Model Development (작물모형개선을 위한 저장온도별 '남도' 마늘의 생장 및 수량 특성)

  • Byung-Hyuk Kim;Min-Seon Choi;Minji Shin;Seong Eun Lee;Kyung Hwan Moon;Chun Hwan Kim;Hyun-Hee Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.141-150
    • /
    • 2024
  • Garlic (Allium sativum L.) is considered as one of the most important vegetables with various uses throughout the many countries. Also, it is one of the most economically important Allium species, and has been widely cultivated for more than 5,000 years. In Korea, garlic is planted in late summer and is grown from autumn and spring of the next year. Bulb starts to form when temperature rises under longer photoperiods. Garlic growth is affected by various factors such as storage conditions, humidity, duration of minimum temperature, and photoperiod. Also, the storage conditions for propagation seed are known to potentially affect future vegetative stages. In this study, we evaluated to effect of the inter-bud growth and growth of the southern-type cultivar 'Namdo' according to storage temperatures. The inter-bud growth, emergence & sprouting rate, and initial growth of stored garlic at low temperatures (5~15℃) exhibited robust growth, while garlic stored at high temperatures (30℃) was investigated to be sluggish compared to another treatments. However, the bulb diameter of stored garlic at 10 ℃ and 15℃ increased to 148.7% and 154.0 % compared to untreated garlic, respectively. Also, the bulb weight of stored garlic increased to 285.7% and 294.4% compared to control, respectively. In contrast, garlic stored at 5℃ showed a decrease of 70 .5% in bulb dimeter and 70 .6% in bulb weight compared to the control. As a results, it was confirmed that the storage temperature of garlic affects the inter-bud growth, emergence & sprouting rate, growth, bulb diameter, and bulb weight. These results will be to the possibility that is possible to estimate the growth cycle of garlic using the growth index for the improvement of crop modeling.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

Modelling the Effects of Temperature and Photoperiod on Phenology and Leaf Appearance in Chrysanthemum (온도와 일장에 따른 국화의 식물계절과 출엽 예측 모델 개발)

  • Seo, Beom-Seok;Pak, Ha-Seung;Lee, Kyu-Jong;Choi, Doug-Hwan;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.253-263
    • /
    • 2016
  • Chrysanthemum production would benefit from crop growth simulations, which would support decision-making in crop management. Chrysanthemum is a typical short day plant of which floral initiation and development is sensitive to photoperiod. We developed a model to predict phenological development and leaf appearance of chrysanthemum (cv. Baekseon) using daylength (including civil twilight period), air temperature, and management options like light interruption and ethylene treatment as predictor variables. Chrysanthemum development stage (DVS) was divided into juvenile (DVS=1.0), juvenile to budding (DVS=1.33), and budding to flowering (DVS=2.0) phases for which different strategies and variables were used to predict the development toward the end of each phenophase. The juvenile phase was assumed to be completed at a certain leaf number which was estimated as 15.5 and increased by ethylene application to the mother plant before cutting and the transplanted plant after cutting. After juvenile phase, development rate (DVR) before budding and flowering were calculated from temperature and day length response functions, and budding and flowering were completed when the integrated DVR reached 1.33 and 2.0, respectively. In addition the model assumed that leaf appearance terminates just before budding. This model predicted budding date, flowering date, and leaf appearance with acceptable accuracy and precision not only for the calibration data set but also for the validation data set which are independent of the calibration data set.