• Title/Summary/Keyword: crop energy

Search Result 508, Processing Time 0.027 seconds

Microclimate and Crop Growth in the Greenhouses Covered with Spectrum Conversion Films using Different Phosphor Particle Sizes (광전환재 크기가 다른 광전환 필름 피복 온실 내 미기상 및 작물 생육)

  • Park, Kyoung Sub;Kwon, Joon Kook;Lee, Dong Kwon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The objective of this study was to analyze the microclimate and the growth of tomato and lettuce in the greenhouses covered with spectrum conversion films using different phosphor particles sizes. Two spectrum conversion films using phosphor particles larger than $10{\mu}m$ (Micro-film) and smaller than 500 nm (Nano-film) in radius, and poly-ethylene (PE) film were used in double-layered greenhouses as outer coverings. PE films were used as inner coverings in all the greenhouses. Thickness of the films for inner and outer coverings was 0.06 mm. Tensile strength, elongation, and tearing resistance of the Micro- and Nano-films were not different from those of the PE film. Transmittances at a wavelength of 300-1100 nm were a little higher at the Micro-film and lower at the Nano-film than that of the PE film, respectively. Air temperatures at the Micro- and Nano-films were over $2^{\circ}C$ higher than at the PE film, but no significant difference was observed between the two light conversion films. The soil temperature at the Nano-film was $1.5^{\circ}C$ and $3^{\circ}C$ higher than at the Micro- and PE films, respectively. The yields of tomato at the Micro- and Nano-films were 12% and 14% higher than at the PE film, but no significant difference was observed between the two spectrum conversion films. The total soluble solid showed no significant differences among all the films. The yields of lettuces at the Micro- and Nano-films were 27% and 59% higher than at the PE film. Hunter's red (a) value of the lettuce leaf was the highest at the Nano-film. In this experiment, tomatoes requiring high irradiation were better at the Nano film, while lettuce requiring low irradiation better at the Micro film.

Distribution of Potassium Fractions and Soil Parameters Related to the Potassium Availability of Upland Soils (밭토양(土壤)의 칼륨형태별(形態別) 함량분포(含量分布) 및 칼륨비옥도(肥沃度) 관련지표(關聯指標))

  • Park, Yang-Ho;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.179-188
    • /
    • 1994
  • This study was conducted to investigate the distribution of potassium fractions and to establish the soil chemical indices for assessing potassium availability in upland soil. Soil samples were collected from 66 vegetable crop fields of Chungbuk Jungweon, Jeonbuk Imsil and Kyengbuk Euiseong and these samples were analyzed water soluble(W. S. -K), exchangeable(Exch. -K) and nonexchangeable potassium(Nonex. -K). The distribution of potassium fractions was examined for soils having different physico-chemical properties and compared with the soil parameters related to the potassium availability. 1. The distribution ranges of W.S.-K, Exch.-K and Nonex.-K were 0.07~1.42, 0.27~2.30, and 0.84~4.74me/100g, and average contents of relevent fractions were 0.40, 1.03 and 2.37me/100g respectively. 2. Contents of W.S.-K and Exch.-K were decreased with increasing soil pH, CEC, Exch. Ca and Exch. Mg contents but Nonex. -K showed a low correlationship with these factors. 3. Exch.-K content slightly inereased with increasing clay content, while W.S.-K and Nonex. -K contents were grandually decreased with clay contents. 4. The relationship between W.S.-K and Exch.-K was significant and W.S.-K was released from soil at 0.23me/100g content of Exch.-K 5. Contents of W.S-K and Exch.-K showed high correlationship with soil chemical parameters such as ratio of exchangeable cations(K/Ca+Mg), ratio of exchangeable cation equivalent[$K/{\sqrt{Ca+Mg}}:(me/100g)^{1/2}$], potassium exchangeable free energy(${\Delta}F=RT$ 1n $K/{\sqrt{Ca+Mg}}$ : calories/mole) and saturation percentage of potassium($Exch.K/CEC{\times}100$), and these factors were considered to be good parameters for assessing soil potassium availability.

  • PDF

Development of Cotton Farming and Transformation of Rural Area in Sanliurfa Prefecture, Turkey (터키 샹르울파주 목화농업의 전개와 지역사회의 변화)

  • Kang, Sukkyeong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.87-111
    • /
    • 2013
  • Regional disparities between eastern and western regions is the most of serious problem for balanced regional development in Turkey. The Southeastern Anatolia Project (GAP) is being implemented to eliminate these regional development disparities. The work that was initially planned as predominantly for hydraulic energy production to utilize water resources of the Tigris and Euphrates rivers more effectively was later transformed into an integrated multi-sector regional development project. This study noted that this region had very limited cash crop production because of the constraints of semi-arid climate of the southeastern region, however, later, it has changed Turkey's major cotton producing region since Southeastern Anatolia Project carried out. Therefore, this study investigated background, process, and content of the Southeastern Anatolia Project with respect to high cotton productivity in this region and examined the dynamic changes of cotton productivity in this region. In addition, Sanliurfa prefecture is one of the main development axes of the Southeastern Anatolia Project, because government investments are concentrated on this prefecture. Therefore, this study examined the background and process of cotton farming growth in this prefecture. In 2011, Sanliurfa prefecture produced 37.6% of Turkey's total cotton production. This is mainly due to agricultural infrastructure expansion such as land consolidation, irrigation, roads and farm roads. Also, it is one of the main factor that subsidies paid to farmers for cotton cultivation. The introduction of irrigation has dramatically changed the direction of seasonal migration of this area. Prior to irrigation, this area had a serious social issue about out-migration for seasonal labor to other areas. However, the introduction of irrigation made this area that changed to in-migration and intramigration for cotton cultivation. Irrigation water is supplied to farmers through the WUAs (Water User Associations) that handed over irrigation water management, operation from DSI (General Directorate of State of Hydraulic Works). However, the WUAs are under the influence of Ashiret, a traditional feudal social structure. Because of this reason, it does not have an efficient management for farmers. Also, it is one of the reasons that this area does not have autonomous farmer organization.

  • PDF

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model (Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측)

  • Lee, June Woo;Eom, Jung Nam;Kang, Woo Hyun;Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Economic Analysis of Rice Production by Seed Broadcasting -In the Case of Daeho Large Scale Tidal and Development Area- (수도 직파재배의 경제성분석 -대단위 대호간척농지를 중심으로-)

  • Lim, Jae Hwan;Ryu, Yong Hee
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.301-322
    • /
    • 1996
  • This study is first aimed at identifying the possibility of labour saving and production cost decreasing in rice production with respect to seed broad casting technology. Comparison of labour inputs and production costs of rice in-between USA and Korea and recommendation of policy guidelines for the continous rice cultivation are the second objective of this study. Under the WTO system, rice enterprice is the most vulnerable crop in the sense of labour productivity and price competitiveness in the international market. How to adapt labour saving technology and how to decrease production costs are the most imminent problems to be solved in rice production. To achieve the objectives, survey on nine rice enterprice farms were made in Daeho tidal farmland with respect to the size of farm, labour inputs, productivity, farm mechanization and farm land base development. The existing data on labour saving technology by seed broadcasting which had surveyed by Rural Development Administration were collected to compare the surveyed data from Daeho tidal farm land The study results and policy recommendation are summarized as follows; 1. Labour requirements per 10a for rice enterprise farms with seed broadcasting and with transplanting were estimated 11.4 and 18.5hours respectively. 'This above labour inputs were equivalent to 1/3-1/5 of the national average labour inputs of 53.6 hours which were included transplanting and harvesting by machinery. Considering the labour requirement of 1.7 hours per 10a for the USA rice production, Korea rice culture has possibility to decrease labour demand upto USA level of labour inputs. 2. Production cost of rice in Korea were estimated US$4,181 per ha which were higher than that of USA by 3.00 times and production costs per ton were shown as US$313 for USA rice and US$1,018 for Korean rice. 3. Land productivity of rice per 10a in America was reached to 4,325kg and the counterpart of Korea was about 4,181kg in recent year. In the sense of land productivity, both yields of rice were comparable. 4. The price of japonica type rice similar to Korean traditional rice in international market in 1994 was f.o.b US$466 per ton which was equivalent to import parity price of US$830 per ton in domestic market. The price of rice purchased by Korean G't and received by farmers were amounted to US$ 2,013 and US$ 1,663 respectively in the same year. Domestic prices mentioned above were higher than the import parity price as US$830 by 2.0-2.4 times. 5. American rice production competitive to Korean rice was equivalent to 17,012 thousand tons, 1.28% of the world production of rice in 1991 and consumption of rice in America was amounted to 2,633 thousand tons. Exportable quantity of USA rice were estimated as 4,379 thousand tons of which 52.3%, 2,300 thousand tons, were exported indeed in the same year. 6. The quantity of Korean rice produced in 1991 was estimated 1.00% of the world production. The world amount of rice exported in 1991 was reached to 2.45% of the world production of which 34.2% was occupied by USA The remaining quantities of world exported rice were dominated by Tiland, Pakistan and Vietnam where produced indica variety. 7. Under the given technology, labour inputs per 10a for rice production could be possible to save by 70% of the national average labour requirement of 53.6 hours through implmenting complete farm mechanization with land consolidation and on-farm development and improvement of fanning practices like seedbroad casting txchnology etc. On the other hand, prduction costs of rice could be decreased by 10% rather than 49% as target indicated in the Rural Development Counter Measures of Korean Government in 1994 owing to increasing farm mechanization cost and interest on land service with high price. Accordingly production cost of rice per kg could be decreased only by 10% of the 1994 production cost. 8. Rice policy of Korean government in the future should take into account the labour saving technology to solve labour shortage in rural area and to enhance off-farm incomes by creating job opportunities in agro-industrial zones and special production area. On account of the staple food and main energy source for people's health, rice production even encountered vulnerable economic settings should be continued without price distortion policies and discouraging farmer's intention to cultivate rice by importing institutionally the direct income subsidy system.

  • PDF

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Studies on Growth Characteristics and Propagation Method of Introduced Hop (Humulus lupulus L.) Cultivars (홉(Humulus lupulus L.) 도입 품종의 생육특성 및 영양번식 연구)

  • Tae Hyun Ha;Jae Il Lyu;Jun-Hyung Lee;Jaihyunk Ryu;Sang Hoon Park;Si-Yong Kang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.2
    • /
    • pp.181-190
    • /
    • 2023
  • Domestic hop (Humulus lupulus L.) production has been suspended since the early 1990s due to foreign imports, but interest in local production is rising due to the recent craft beer boom in Korea. This study was conducted focusing on the development of growth characteristics and propagation technology for 6 introduced hop cultivars as a basic study for domestic hop production and breeding program. In the hop growth survey conducted in 2021 and 2022, the 5-year-old plants after planting generally showed a tendency to increase the height of strobile setting, strobile size, number and weight of strobile per hill compared to the 4-year-old plants. As a result of the experiment with hop vine cuttings, the average rooting rate of all cultivars was as high as 88% even in only water treatment that were not added with Atonik (Atonik, Arysta, Japan), a rooting agent. There were differences between cultivars in rooting length and rooting rate according to the Atonik treatment method. When checking the survival rate of the rooted cuttings seedlings after transplanting into the soil, it was confirmed that the survival rate of the cuttings in the tissue culture room was significantly lower than that of the cuttings in the greenhouse. However, in transplanting step, cutting plants from culture room condition was strongly inhibited plant growth because of changing environment conditions. As a results of tissue culture, the thidiazuron (TDZ) 1 ㎎/L treatment in the media generated 6 to 9 shoots/explant, while the 6-benzylaminopurine (BAP) 1 ㎎/L treatment generated only 1 to 2 shoots/explant. Therefore, it is more effective to culture by adding TDZ rather than BAP. These results indicated that the development of technology to manage stably after transplanting of cutting or micropropagating plants into potting soil is important for mass propagation of hops.