• Title/Summary/Keyword: crop disease

Search Result 1,139, Processing Time 0.024 seconds

Biochemical Changes in Sorghum Leaves Infected with Leaf Spot Pathogen, Drechslera sorghicola

  • Khan, A.J.;Deadman, M.L.;Al-Maqbali, Y.M.;Al-Sabahi, J.;Srikandakumar, A.;Rizvi, S.G.
    • The Plant Pathology Journal
    • /
    • v.17 no.6
    • /
    • pp.342-346
    • /
    • 2001
  • The physiological changes in sorghum (Sorghum vulgare Pers.) leaves infected with Drechslera sorghicola were investigated through five recognizable stages of disease development. Water-soaked yellowish brown spots developed two days after inoculation, turned brown with yellow halo, enlarged and coalesced at later stages of disease development. Healthy and infected leaves were analyzed for different biochemical constituents. The chlorophyll contents were decreased significantly with the progress of infection. The levels of reducing and total sugars increased while non-reducing sugars decreased to a significant extent with the progress of disease. The concentration of total phenolics, orthodihydroxy phenols, free and glycosidic phenols showed significant changes due to infection, whereas basic and acid phenols showed little or no change with disease development. Levels of phenolic compounds increased four days after inoculation and decrease thereafter, but the concentration was higher at every stage of disease development relative to healthy tissues. Polyphenol oxidase and peroxidase enzyme activities increased to varying degrees at different stages of infection. Analysis of protein fractions showed a significant increase with the progress of disease.

  • PDF

Breeding of 'Greenbear' for New Cultivar of Gomchwi with Disease Resistant and High Yield (내병 다수성 곰취 신품종 '그린베어' 육성)

  • Suh, Jong Taek;Yoo, Dong Lim;Kim, Ki Deog;Lee, Jong Nam;Sohn, Hwang Bae;Nam, Jeong Hwoan;Kim, Su Jeong;Hong, Su Young;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.339-345
    • /
    • 2021
  • 'Gondalbi' (Ligularia stenocephala (Maxim.) Matsum. & Koidz.) is the most cultivated Gomchwi species because of higher yield and low in aromatic flavor and bitter taste, But 'Gondalbi' is susceptible to powdery mildew disease and leaf shriveling after harvest in Summer. To improve powdery mildew disease resistance and post-harvest leaf shriveling problem in 'Gondalbi', 'Handeari-gomchwi' resistant to powdery mildew disease and having higher yield potential used as a paternal trait donor. Powdery mildew disease resistance and post-harvest leaf shriveling as well as agronomic performance of a new variety, 'Greenbear' were tested under field and green house conditions in Pyungchang, Korea from 2007 to 2016. Expression of both maternal and paternal characteristics in 'Greenbear' including purple colored petiole ears, glossy leaf and paternal, petiole trichome, absent at the back of a leaf were confirmed. Plant size and flowering time of 'Greenbear' were similar to check line, 'Gommany', while leaf number per plant and yield were higher in 'Greenbear'. 'Greenbear' has thinner leaves (0.66mm) compared to 'Gommany (0.69 mm)', and hardness appeared slightly higher in 'Greenbear(25.1 kg/cm2)'. The resistance to powdery mildew disease of the 'Greenbear' variety was slightly lower than that of the 'Gommany' variety, but somewhat showed high resistance.

Assessing Frogeye Leaf Spot Resistance on Recommended Soybean Cultivars (콩 주요 품종에 대한 점무늬병 저항성 평가)

  • Kang, In Jeong;Shim, Hyeong Kwon;Shin, Dong Bum;Roh, Jae Hwan;Goh, Jaeduk;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.243-249
    • /
    • 2015
  • Soybean frogeye leaf spot caused by the fungus Cercospora sojina Hara, has known to lead a severe reduction of crop yield. Since frogeye leaf spot on soybean has recently become a serious problem in Korea, the susceptibility of recent recommended cultivars against C. sojina had been tested. To standardize the disease severity of soybean, the optimum sporulation condition of C. sojina and the disease index were established in this study. Sporulation was maximized on the 10% V8 juice agar with 12 h light and 12 h dark at $25^{\circ}C$. Spore suspension ($10^5spores/ml$) was sprayed on the leaves of soybean (V6 stage), and the disease responses to each isolate were evaluated on 28 days after inoculation. As a result, Daepung, Shinpaldal2ho, Yeonpung and Cheonga showed the resistance reaction to 8, 7, 6, 6 isolates of C. sojina, respectively, whereas Cheongja, Hwangkeum, Taekwang, Daewon, Cheonsang and Sinhwa showed the susceptible reaction to 8 isolates of C. sojina. Breeding the resistant soybean cultivars against C. sojina requires a uniform resistance for screening technique. The disease index of frogeye leaf spot on soybean developed in this study can be effectively used for the accurate field assay to select the frogeye leaf spot resistant soybean.

Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species

  • Chung, Hyunjung;Goh, Jaeduk;Han, Seong-Sook;Roh, Jae-Hwan;Kim, Yangseon;Heu, Sunggi;Shim, Hyeong-Kwon;Jeong, Da Gyeong;Kang, In Jeong;Yang, Jung-Wook
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.305-313
    • /
    • 2020
  • Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.

The change of Phytophthora infestans Populations in South Korea using Traditional Markers and Genome Analyses

  • Do Hee Kwon;Jin Hee Seo;Yong Ik Jin;Gun Ho Jung;Jang Gyu Choi;Gyu Bin Lee;Kwang Ryong Jo;Jaeyoun Yi;Hwang Bae Sohn;Young Eun Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.257-257
    • /
    • 2022
  • Late blight, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, has been the most important disease limiting potato production worldwide. P. infestans undergo major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to divide the 86 South Korea isolates into six clonal lineages: KR_1_A1, KR_2_A2, SIB-1, US-11, SIB-1 like, and KR-2 like. We documented the emergence of a new lineage, termed SIB-1 like, and KR-2 like, and their rapid replacement of other lineages to exceed 35% of the pathogen population across South Korea. Genome analyses of the Korean P. infestans populations revealed extensive genetic polymorphism, particularly in effector genes. Importantly, SIB-1 like isolates carry an intact Avr8 effector gene that triggers resistance in potato carrying the corresponding R immune receptor gene R8 cloned from Solarium demissum. These findings point toward a strategy for deploying genetic resistance to mitigate the impact of the SIB-1 like lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. Further study is being done on pathogenicity of the SIB-1 like isolates on cultivated potatoes and changes in expression patterns of disease effector genes within the SIB-1 like isolates

  • PDF

Evaluation and Verification of Barley Genotypes with Known Genes for Resistance to Barley yellow mosaic virus and Barley mild mosaic virus Under Field Conditions in South Korea

  • Kim, Hong-Sik;Baek, Seong-Bum;Kim, Dea-Wook;Hwang, Jong-Jin;Kim, Si-Ju
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Soil-borne barley yellow mosaic disease caused by Barley yellow mosaic virus (BaYMV) or Barley mild mosaic virus (BaMMV) gives a serious threat to the winter barley cultivated in the southern regions in Korea. It is important to develop resistant varieties for stable and high-yield production. The objectives of this study were to evaluate 22 genotypes of exotic barley germplasms carrying the resistance genes rym1 through rym12, with the exception of rym10, and to determine the genes that confer resistance to BaYMV or BaMMV in Korea. Using the traditional visual scoring of symptoms at 4 locations over 3 years, average disease rate values differed (P < 0.001) among the genotypes. ELISA test revealed the presence of both BaYMV and BaMMV in all of the field sites but Jinju and significantly different rates of infection among genotypes and years. Barley genotypes differed in how virus quantities and pathogen-induced symptoms were correlated, especially in response to BaYMV. Disease incidence was affected by the climatic conditions present during the early growing stage before overwintering. A Chinese landrace, 'Mokusekko 3', carrying rym1 and rym5 was comparatively resistant at all locations studied. The barley genotypes carrying either rym6 or rym9 were susceptible to the viral strains. The genotypes carrying rym5 were resistant in Jinju and Milyang but susceptible in Iksan and Naju. The resistance genes rym2 and rym3 were effective in local strains and would be potent contributors to disease resistance.