• Title/Summary/Keyword: crop disease

Search Result 1,164, Processing Time 0.029 seconds

A New Early Maturing Rice Cultivar "Junamjosaeng" with Multiple Disease Resistance and High Grain Quality Traits (고품질 복합내병성 조생종 벼 신품종 "주남조생")

  • Lee, Jong-Hee;Yeo, Un-Sang;Lee, Jeom-Sik;Kang, Jong-Rae;Kwak, Do-Yeon;Park, Dong Soo;Cho, Jun-Hyeon;Song, You-Chun;Park, No-Bong;Kim, Choon-Song;Yi, Gi-Hwan;Lim, Sang-Jong;Oh, Byeong-Geun;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Junamjosaeng is a new japonica rice cultivar developed in 2006 from a cross between Milyang165*3 and Koshihikari at the Department of Functional Crop Science, NICS, RDA. This cultivar is suitable for the double cropping system (i. e., before and after the cash crop). Heading date of Junamjosaeng is 6 days earlier than Keumobyeo under the late transplanting cultivation on July 10. It has a high grain fertility under cold conditions and low premature heading. One of the distinguishing characteristics of this variety is its resistance to major diseases like leaf blast, bacterial blight races ($K_1$, $K_2$, $K_3$) and rice stripe virus disease. However, it showed susceptibility to major insect pests. Milled rice kernels are translucent with non glutinous endosperm and have 6.7% protein and 19.8% amylose contents. Milling recovery of head rice is 75.7%. The palatability of cooked rice is better than Keumobyeo. The milled rice yield of Junamjosaeng in local adaptability tests after harvest of the cash crop was $4.43\;tons\;ha^{-1}$. This cultivar is suitable for planting in the plain paddy fields of Honam and Yeonnam regions in Korea.

Enhancement of Biomass Production in Chinese Milk Vetch (Astragalus sinicus L.) by Controlling Alopecurus aequalis with Sethoxydim under Poor CMV Seedling Stand (자운영 입모부족시 Sethoxydim 처리가 둑새풀 방제 및 자운영 녹비량 증가에 미치는 영향)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Hwang, Woon-Ha;Choi, Kyung-Jin;Park, Sung-Tae;Kim, Jeong-Il;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.265-269
    • /
    • 2009
  • Technology development for sufficient dry matter production of Chinese milk vetch (CMV) is most important in CMV-rice cultivation system in order to provide sufficient nutrients to rice plants. However, when the CMV plants are dominated by the weed, especially Alopecurus aequalis, the CMV growth could be reduced due to light and nutrient competition. In addition, A. aequalis is potential host of the rice dwarf virus disease. Therefore, control of A. aequalis is necessary to enhance the biomass production of CMV plants when CMV stands are insufficient. The use of chemical like sethoxydim (20%, ai) showed the highest control rate of 84% at early stage and was reduced as application was delayed. A. aequalis control did not change the CMV seedling stand before and after herbicide treatment and the reseeding stand in fall was rather increased 2.2 to 2.6 times. On the other hand, in untreated control, the CMV stand at May 15 and reseeding stand in fall was significantly reduced as compared with the before herbicide treatment. Control of A. aequalis increased the CMV dry matter production by 164% for 50% CMV coverage rate and 63% for 25% CMV coverage rate. This is equivalent to $12.3{\sim}16.4\;kgN$/10a which is greater than the recommended nitrogen rate of 9kg/10a. The result indicates that the control of A. aequalis is an efficient way to enhance dry matter production in CMV-rice cultivation system especially when CMV stand is poor.

Effect of Subsoiling on Growth and Yield of Sweetpotato in Continuous Sweetpotato Cropping Field (고구마 연작지에서 심토파쇄에 따른 고구마 생육 및 수량성 변화)

  • Lee, Hyeong-Un;Chung, Mi-Nam;Han, Seon-Kyeong;Ahn, Seung-Hyun;Lee, Joon-Seol;Yang, Jung-Wook;Song, Yeon-Sang;Kim, Jae-Myung;Nam, Sang-Sik;Choi, In-Hu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Storage root yield of sweetpotato was decreasing owing to continuous sweetpotato cropping, debasement of soil physical properties, increasing incidence of pest and disease. This study was conducted to evaluate the changes in physicochemical properties of the soil owing to subsoiling (subsoiling to 50 cm depth), and the effect on growth and yield of sweetpotato. The subsoiling treatments included subsoiling treated every year for two years, subsoiling in the first year, and no subsoiling control. The soil physical properties measured were bulk density, hardness, porosity, three phase. Bulk density, porosity, soild (%) of three phase were improved by subsoiling in topsoil and subsoil. Main vine length and vine yield in subsoiling soil were higher than those in no subsoiling soil, but those were not significantly different. Yield of marketable storage root in subsoiling soils treated every year for two years and treated in the first year was more increased 17% and 20% than no subsoiling soil, respectively. The number of marketable storage root per plant was also higher in subsoiling soils than no subsoiling soil, but it was not significantly different. Soluble solid contents and total free sugar contents of storage root of sweetpotato were not significantly different among the treatments. These results show that improving soil physical properties by subsoiling could promote high yield of marketable storage root in continuous sweetpotato cropping field.

Virus Disease Incidences and Transmission Ecology of Oriental Melons in Seongju Area (성주지역 참외 바이러스병의 발생실태와 전염생태)

  • Park, Seok-Jin;Lee, Joong-Hwan;Nam, Moon;Park, Chung-Youl;Kim, Jeong-Seon;Lee, Joo-Hee;Jun, Eun-Suk;Lee, Jun-Seong;Choi, Hong-Soo;Kim, Jeong-Soo;Moon, Jae-Sun;Kim, Hong-Gi;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.342-350
    • /
    • 2011
  • Throughout the years 2008 to 2010, we analyzed approximately two thousand oriental melon samples collected from Seongju, using electron microscopy and testing by RT-PCR using primers specific for eight cucurbit-infecting viruses. Data from RT-PCR indicated that Cucumber green mottle mosaic virus (CGMMV), Watermelon mosaic virus 2 (WMV2) and Zucchini yellow mosaic virus (ZYMV) were present and the other viruses were not detected. Among them, CGMMV and WMV2 were the most prevalent pathogens. CGMMV was thought to infect oriental melon from the early growing season, and reached nearly 100% in the later of growing period. Otherwise, WMV2 emerged from June, several months later compared to CGMMV. CGMMV was detected from all aerial parts of the oriental melon including seeds, but not from the roots of the grafted pumpkin rootstock. Seed of two out of five commercial varieties were shown to be CGMMV positive. Nine varieties of pumpkins used as rootstocks were not infected with CGMMV. When the seedlings of grafted oriental melon were transplanted into pots mixed with the oriental melon debris infected with CGMMV, they were not infected by CGMMV. Cutting of pruning shear and the contact of tendrils contributed 48% and 30% to the transmission of the virus, respectively.

Development of 'Soomany' for New Cultivar of Gomchwi with Disease Resistant and High Yield (내병 다수성 곰취 신품종 '수마니' 육성)

  • Suh, Jong Taek;Yoo, Dong Lim;Kim, Ki Deog;Lee, Jong Nam;Sohn, Hwang Bae;Nam, Jeong Hwoan;Kim, Su Jeong;Hong, Su Young;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.2
    • /
    • pp.80-85
    • /
    • 2020
  • A new Gomchwi cultivar 'Soomany' was derived from a cross between Gomchwi (Ligularia fischeri (Ledeb.) Turcz.) and Handaeri-gomchwi (Ligularia fischeri var. spiciformis Nakai). The investigation and selection of growth and yield characteristics were conducted from 2007 to 2015 in field and greenhouse of Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, in Korea. On a newly developed cultivar 'Soomany', color of petiole ear is light green, petiole trichome is existent, trichome and light on the back of the leaves don't exist, and density of leaf vein is degree 4. Plant height, leaf length, leaf width and petiole length are 77.1, 22.3, 21.5 and 57.2 cm, respectively in the growth characteristics of the 2nd year. Plant size was also higher than that of 'Sammany' generally. Bolting date was on August 15. Flowering date was on September 19, about 9 days later than 'Sammany'. 'Soomany' and 'Sammany' had 149 and 133 leaves per plant, respectively. Total yield of 'Soomany' (1,623 g/plant) made a very good comparison with that of 'Sammany' (1,385 g/plant). 'Soomany' showed harder leaves (25.8 ㎏/㎠) than 'Sammany' (20.8 ㎏/㎠), whereas 'Soomany' had thinner leaves (0.53 mm) than 'Sammany' (0.62 mm). 'Soomany' variety has shown strong resistance to powdery mildew disease compared to 'Sammany'. In May 2019, the right of variety protection of 'Soomany' was registered as a new Gomchwi variety (Register No. 192).

Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl' (콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌)

  • Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.

Effect of extraction method on sesame oil quality

  • Lee, Byong Won;Kim, Sung Up;Oh, Ki-Won;Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byoung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.255-255
    • /
    • 2017
  • Sesame has been consumed for centuries as flavoring ingredient in eastern Asian countries, especially Korea. Sesame seeds have been used as health food for traditional medicine to prevent disease in Asian countries for several thousand years. Sesame seed has higher oil content (around 50%) than most of the known oilseeds. Sesame oil is rich in monounsaturated and polyunsaturated fatty acids. Extraction of sesame has developed significantly over the years. The mechanical method was an early means of separation which was physical pressure to squeeze the oil out. Nowadays, solvent extraction becomes the commonly used commercial technique to recover oil from oilseeds. In this study, we investigated extraction efficiency and quality of oil affected by cultivars and extraction methods of sesame seed. Different variables were investigated; roasting temperature ($170{\sim}220^{\circ}C$), extraction methods (solvent and physical pressure), forced ventilation system and cultivars. The Contents of B(a)P in sesame oil after roasting at $170{\sim}220^{\circ}C$ were 0.30~2.53 ppm. When we introduced forced ventilation system during roasting, B(a)P Contents were decreased up to 36%. The Oil extraction efficiency on sesame seed was statistically depending on the cultivars and extraction methods. The oil extraction yields of solvent and physical pressure extraction were 56.3% and 44.6%, respectively. Many of sesame cultivars and genetic resources are linolenic acid content of less than 0.5%. The results supported that we have developed a safe and high quality sesame oil processing methods for small and medium-sized companies.

  • PDF

First Report of Bacterial Wilt by Ralstonia pseudosolanacearum on Peanut in Korea (Ralstonia pseudosolanacearum에 의한 땅콩 풋마름병 발생 보고)

  • Choi, Soo Yeon;Kim, Nam Goo;Kim, Sang-Min;Lee, Bong Choon
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.54-56
    • /
    • 2022
  • A peanut plant showing wilt and browned symptom was found in the field of Gochang, Korea, in July 2021. The symptomatic peanut plant was collected from the field and isolation of the pathogen caused the wilt symptom was performed using the collected sample on TZC media. The dominated colony on media was isolated colony on media was isolated and subcultured of purification. The pure cultured bacteria was identified as Ralstonia solanacearum by sequencing of 16S rRNA gene. Multiplex polymerase chain reaction using phylotype-specific primer set identified isolate as phylotype I (R. pseudosolanacearum). Phylogenetic tree was constructed based on 16S rRNA sequence and it was closed with R. pseudosolanacearum. Pathogenicity of the isolates was assessed by soil drenching inoculation on 4-week-old peanut plant. The wilt symptom was successfully reproduced by inoculation of the isolates after 14 days. This is first report of bacterial wilt caused by R. pseudosolanacearum on peanut in Korea.

Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production

  • Sadat, Md. Abu;Choi, Jaehyuk
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.103-108
    • /
    • 2017
  • World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world's largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.

Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

  • Hilton, Angelyn;Zhang, Huanming;Yu, Wenying;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.238-248
    • /
    • 2017
  • Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-$1{\alpha}$ gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.