• Title/Summary/Keyword: crop disease

Search Result 1,139, Processing Time 0.023 seconds

Effects of Fungicide Control of Downy Mildew (Pseudoperonospora cubensis) on Yield and Disease Management of Ridge Gourd (Luffa acutangula)

  • Deadman, M.L.;Kagadi, S.R.;Pawar, D.R.;Gadre, U.A.
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 2002
  • Seven fungicides were compared for the control of downy mildew on midge gourd. All treatments had significantly lower rates of disease progress curves and disease severity levels than that of the control. The highest yields were obtained from crops treated with metalaxyl + mancozeb, fosetyl-Al, and chlorothalonil. These treatments also proved to be the most economical considering the treatment costs.

High Grain Quality Mid-late Maturing Rice Cultivar 'Yechan' with Lodging Tolerance and Multiple Disease Resistance (내도복 복합내병 최고품질 중만생 벼 '예찬')

  • Baek, Man-Kee;Park, Hyun-Su;Nam, Jeong-Kwon;Cho, Young-Chan;Kim, Ki-Young;Kim, Jeong-Ju;Kim, Woo-Jae;Shin, Woon-Chul;Jeung, Ji-Ung;Kim, Choon-Song;Jeong, Jong-Min;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.504-514
    • /
    • 2019
  • 'Yechan' is a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance. It was a derived from a cross between 'Hopum' and 'Iksan537' (cultivar name 'Haepum'). 'Hopum' is a high grain quality mid-late maturing rice cultivar with strong lodging tolerance and 'Haepum' is a high grain quality medium maturing rice cultivar with multiple disease resistance. To shorten the breeding period, another culture method was applied to the F1 plants. 'Yechan' was selected through the pedigree method, yield trials, and local adaptability tests, with a high selection pressure for grain quality, lodging, and disease resistance. The heading date of 'Yechan' was August 14, one day later than that of 'Nampyeong'. 'Yechan' is a cultivar tolerant to lodging and it has short culms. It has multiple disease resistance against rice blast, rice stripe virus, and bacterial blight, including the K3a race, the most virulent race in Korea. The yield of 'Yechan' was similar to that of 'Nampyeong'. 'Yechan' showed excellent grain appearance, superior taste when cooked, and enhanced milling performance; thus, we concluded that it could contribute to the improvement of Korean japonica rice cultivar quality. 'Yechan', a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance, would be suitable for cultivation in the southern plain area in Korea and has been utilized in the breeding programs aimed at enhancing the grain quality and stability for the cultivation of Korean japonica rice (Registration No. 7647).

Rice Blast Populations Isolated from the Border Area of North Korea (북한 접경지역의 벼 도열병균 레이스 분포)

  • Chung, Hyunjung;Roh, Jae-Hwan;Yang, Jung-Wook;Shim, Hyeong-Kwon;Jeong, Da Gyeong;Kim, Joo Yeon;Shin, Jin Young;Kang, In Jeong;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.164-172
    • /
    • 2019
  • Rice blast disease caused by Magnaporthe oryzae is the most important disease of rice in both South and North Korea. Cultivation of disease-resistant cultivar is the best way to prevent this notorious disease, but M. oryzae races have been continuously changed to adapt a new cultivar. Therefore, it is important to get the information about the race and avirulence genes of the pathogen for developing blast-resistant rice cultivar. Since the entrance of North Korea was prohibited, the information about the races of M. oryzae in North Korea border areas and South Korea was collected to get the information about the diversity of rice blast pathogen in North Korea. The disease occurrence on monogenic lines carrying single resistant gene was investigated in Jeonju, Suwon, Cheorwon, Goseong, and Baengnyeongdo in Korea, and Dandong in China. The monogenic lines in Jeonju and Suwon showed diverse ranges of the response, while those in Baengnyeongdo and Dandong showed relatively high resistant responses to rice blast. All the field isolates of M. oryzae were characterized for rice blast races by the Korean differential varieties and screened for known avirulence genes to determine the spatial distribution of avirulence genes and the population of M. oryzae.

Susceptibility to Calonectria ilicicola in Soybean Grown in Greenhouse and Field

  • Kim, K. D.;Russin, J. S.;Snow, J. P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.239-244
    • /
    • 1998
  • Susceptibility of soybean cultivars to Calonectria illicicola was evaluated in a greenhouse by inoculating seedlings with mycelium in agar discs placed on the stems at the soil line. A range of responses was detected among cultivars following inoculation with a virulent isolate of C.ilicicola. Rankings of cultivars between greenhouse tests 1 and 2 were similar for disease severity and areas under the disease progress curves (AUDPC). In addition, rankings of cultivars for Final disease severity were highly correlated with AUDPC in test 1 ($r_s$ =0.88, t =5.48, p<0.001), test 2 ($r_s$ =0.99, t =22.10, p<0.001), and when tests were combined ($r_s$=0.89, t=5.82, p<0. 001). Final disease severity and AUDPC consistently identified Asgrow 7986, Braxton, Cajun, and Forrest as soybean cultivars least susceptible to red crown rot. In 1993 and 1994 field tests, a range in disease susceptibility was observed for tested cultivars but none was completely resistant. Soybean cultivars Braxton, Cajun, and Forrest, which were least susceptible to red crown rot in greenhouse tests, also ranked among cultivars with the lowest disease incidence and AUDPC in field tests. Comparisons .between rankings of the eight cultivars common to greenhouse and field tests showed a correlation between final disease severity from combined greenhouse tests and both final disease incidence ($r_s$=0.63, t =1.99, p<0.1) and AUDPC ($r_s$=0.60, t =1.82, p < 0.2) from the combined field tests. However, AUDPC from greenhouse tests did not correlate with either final disease incidence or AUDPC from field tests. The green-house screening method provided consistent results between greenhouse and field tests and successfully identified the least susceptible cultivars Braxton, Cajun, and Forrest.

  • PDF

Etiology of Rice Seedling Disease in Water-Seeded Rice.

  • Sim, Jung-Bo;Moon, Young-Sook;Park, Hyoi-Won;Chun, Se-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.83.1-83
    • /
    • 2003
  • Rice seedling disease is one of major problems in water-seeded rice. This disease is known to be caused by several pathogen such as Pythium, Achlya, and Fusarium species. However, seedling disease of rice in water-seeded rice in Korea is not extensively studied. Pythium species have been isolated from Seosan, Yeoju, Icheon areas using Pythium selective media and their pathogenicity was investigated. All of the Pythium isolates showed strong pathogencity causing seedling emergence reduction in water-seeded rice. Seedling emergence was reduced to 0∼9% at 10 days after inoculation of 23 Pythium isolates compared to 60% of noninoculated control in a growth chamber. However, Fusarium species did not cause seedling emergence reduction in water-seeded rice. In contrast, when no water added into water agar or soil, the pathogen caused seedling rot two weeks after planting. These results indicate that Pythium species is a cause of seedling disease in water-seeded cultivation areas in Korea.

  • PDF

Molecular Characterization of Tomato Yellow Leaf Curl Virus in Korea and the Construction of an Infectious Clone

  • Lee, Bong Choon;Ueda, Shigenori;Yoon, Young-Nam;Shin, Dong Bum;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.219-222
    • /
    • 2014
  • Several tomato production regions in Korea were surveyed for tomato yellow leaf curl disease (TYLCD). Tomato leaf samples showing TYLCD-like symptoms were collected from Tongyeong (To), Geoje (Gi), and Gimhae (Gh) cities of the southern part of Korea. Tomato yellow leaf curl virus (TYLCV) was detected and the full-length genomes of the isolates were sequenced. The TYLCV isolates found in Korea shared high sequence identity (> 99%) with TYLCV-IL [JR:Omu:Ng] (AB110217). Phylogenetic relationship analysis revealed that they formed two groups (with little genetic variability), and the To, Gj, and Gh isolates belonged to the TYLCV-IL group. An infectious clone of TYLCV-To (JQ013089) was constructed and agroinoculated into Nicotiana benthamiana, Nicotiana tabacum var. Xanthi, Petunia hybrida, Capsicum annuum, and Lycopersicon esculentum cv. Hausumomotaro. Agroinfection with a dimeric infectious clone of TYLCV-To induced severe leaf curling and stunting symptoms in these plants, excluding C. annuum. Tomato plants then developed typical yellow leaf curl symptoms.

Identification of Fusarium fujikuroi Isolated from Barnyard Grass and Possibility of Inoculum Source of Bakanae Disease on Rice (피에서 분리한 Fusarium fujikuroi의 동정 및 벼 키다리병의 전염원 가능성)

  • Choi, Hyo-Won;Lee, Yong-Hwan;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.82-85
    • /
    • 2011
  • Bakanae disease symptom were observed in barnyard grass in paddy field in Heanam, Jeonnam. The infected plants were blighted and white mass of spore were formed on the stem. Fusarium species were isolated from infected stem and the isolates were identified as Fusarium fujikuroi based on their morphological and molecular characteristics. The isolates of F. fujikuroi were assigned to reference of F. fujikuroi among related Fusarium species based on the translation elongation factor 1-alpha gene sequence. Pathogenicity of the fungal isolates was confirmed on seedlings of rice and barnyard grass by artificial inoculation. The results indicated that barnyard grass can be inoculum source of Bakanae disease on rice. Thus, effective weed management is necessary to Bakanae disease control and healthy seed production.