• 제목/요약/키워드: critical velocity

검색결과 831건 처리시간 0.024초

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.

질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과 (Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen)

  • 이원준;윤성환;박정;권오붕;박종호;김태형
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

EFDC를 이용한 군산항의 유사 퇴적고 계산에 관한 연구 (A Study on the Sediment Deposition Height Computation at Gunsan Port Using EFDC)

  • 이동주;박영기
    • 한국수자원학회논문집
    • /
    • 제46권5호
    • /
    • pp.531-545
    • /
    • 2013
  • 본 논문은 군산항의 유사퇴적 현상을 정량적으로 파악하고 그에 합리적인 대책을 마련하는데 활용하기 위해, 잘 알려진 EFDC 3차원 유사이송모형을 기초로 군산항의 퇴적고를 효율적으로 계산하기 위한 EFDC KUNSAN_SEDTRAN MODEL(2012)의 적용성에 대해 고찰하였다. 본 모형은 금강하구수리현상변화조사 보고서(Gunsan Regional Maritime Affairs and Port Office, 2004)의 여러 현장 관측치를 가지고 검정 및 검증을 수행했다. 검정 및 문헌조사를 통해, 본 모형의 점착성토사 침강속도(WS, Settling velocity), 퇴적한계전단응력(TD, Critical deposition stress), 기준침식률(RSE, Reference surface erosion rate), 침식한계전단응력(TE, Critical erosion stress)은 각각 2.2E-04m/s, 0.20 $N/m^2$, $0.003g/s{\cdot}m^2$, 0.40 $N/m^2$으로 확인되었다. 그리고 모형의 적용성을 검토하기 위해, 군산항의 13정점의 퇴적고(71일) 및 내항과 외항 정점의 부유사농도(15일)의 모형 계산치와 현장 관측치를 비교 검토했다. 그 결과 퇴적고 계산을 위한 모형의 적용성은 NSE계수가 0.86, 부유사농도 시간평균 상대오차(RE)가 23%로 평가되었다.

Gas Outflow in SDSS AGN-host Galaxies

  • 배현진;우종학;오세명
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.85.1-85.1
    • /
    • 2012
  • Energetic outflow from active galactic nuclei (AGNs) may play a critical role in galaxy evolution. We present a velocity diagnostics for detecting gas outflow in the narrow-line region of Type-2 AGNs using line-of-sight velocity offset of the [O III]${\lambda}5007$ and $H{\alpha}$ emission lines with respect to the systemic velocity of stars in host galaxies. We apply the diagnostics to nearby galaxies at 0.02 < z < 0.05: 3775 AGN-host and 907 star-forming galaxies as a comparison sample, which are selected from the Sloan Digital Sky Survey DR7. After obtaining a best-fit stellar population model for the continuum and a systemic velocity based on stellar lines, we subtract stellar component to measure velocity offsets of each emission line. We find a sample of 169 AGN-host galaxies with outflow signatures, displaying a larger velocity shift of [O III] than that of $H{\alpha}$, as expected in a decelerating outflow model. We find that the offset velocity of [O III] increases with Eddington ratio, suggesting that gas outflow depends on the energetics of AGN.

  • PDF

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

다이너마이트와 미진동파쇄기 발파에 의한 지반진동속도 비교 (The Comparison of the Ground Vibration Velocity by Dynamite and Finecker Blasting)

  • 김일중
    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.39-47
    • /
    • 1996
  • The results of the regression analysis and comparative study between 120 vibration events by dynamite blasting and 68 vibration events by finecker blasting which were monitored in the test blasting are as follows: The ground vibration velocity of dynamite blasting of 0.12 kg charge weight per delay at 7.4 m above the explosive is higher than that of finecker blasting of 0.96 kg charge weight per delay. In the case of 0.12 kg charge weight per delay, the ground vibration velocity of finecker blasting is equal to 5.5% of that of dynamite blasting at the 10 m distance from explosive. The decrement of ground vibration velocity of dynamite blasting of above 0.12 kg charge weight per delay is larger than that of finecker blasting of below 0.96 kg charge weight per delay. The rate of ground vibration velocity of the finecker blasting to that of dynamite blasting decreases with the distance from explosives, but increases with the decrease of charge weight per delay. The increment of ground vibration velocity of finecker blasting is less than that of dynamite blasting with the increase of charge weight per delay at the same distance from explosives. Under the condition of the constant critical ground vibration velocity or use the same charge weight per delay, the blasting working by finecker rather than by dynamite is able to be performed at the nearer place to structures.

  • PDF

도로터널 화재시 반횡류식 균일배기 환기방식에서의 최적배연 연구 (A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation)

  • 전용한;유지오;김남진;서태범;김종윤
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.186-192
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for design of the smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. In case of oversized exhaust ports, the generated smoke is more than the case of uniform exhaust. When the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the moving smoke which can limit the distance to 250 m.

전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링 (Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load)

  • 김준수;김성종;이혁;하성규;이영현
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1547-1557
    • /
    • 2013
  • 시간변화 이동자기력이 작용하는 레일의 변형을 티모센코 보 이론(Timoshenko beam theory)로 가정하였으며, 보의 진동특성에 영향을 미치는 탄성체기초의 감쇠효과 및 강성을 고려하였다. 푸리에 급수와 수치해석을 이용해 강제진동모델의 동적응답과 임계속도를 구하였다. 레일의 진동모델을 유한요소 해석 및 오일러 보 이론(Euler beam theory)과 비교 검증하였다. 강제진동모델을 이용하여 레일의 영구변형을 예측하였으며, 실험결과 레일표면의 영구변형 및 마모를 확인하였다. 보의 설계변수인 레일의 형상, 재료, 탄성체 기초의 감쇠효과 및 강성이 레일의 임계속도 및 레일의 처짐, 축 방향 응력, 전단 응력에 미치는 영향에 대한 매개변수적 연구를 진행하였으며, 보의 설계방향을 얻을 수 있었다.

지하역사 기본 모델에 대한 여객 유동 특성 해석 (Analysis of Pedestrian Flow Characteristics in Subway Station)

  • 남성원
    • 한국철도학회논문집
    • /
    • 제9권3호
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

분류층 연소기내의 유동해석 (Flow Analysis in a Entrained Flow Combustor)

  • 양희천;김중현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.30-36
    • /
    • 2000
  • A numerical study was conducted to investigate the effects of flow parameters in a entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG k-$\varepsilon$ model for turbulent flow. The calculation parameters were the magnitude of primary and secondary jet velocity and the height difference between primary and secondary jet. As the secondary jet velocity increased, the upper recirculation zone of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet velocity at which the size of upper and lower recirculation zone was changed.

  • PDF