• 제목/요약/키워드: critical speeds

검색결과 261건 처리시간 0.025초

Investigations on critical speed suppressing by using electromagnetic actuators

  • Mahfoud, Jarir;Der Hagopian, Johan
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.303-311
    • /
    • 2012
  • The possibility of suppressing critical speeds by using electromagnetic actuators (EMAs) is assessed experimentally in this paper. The system studied is composed of a horizontal flexible shaft supported by two ball bearings at one end and one roller bearing that is located in a squirrel cage at the other end. Four identical EMAs supplied with constant current are utilized. The EMAs associated to the squirrel cage constitutes the hybrid bearing. Results obtained, show that the constant current, when applied to the EMAs, produces a shift of the first critical speed toward lower values. Moreover, the application of constant current for a speed interval around the critical speed enables a smooth run-up or run-down without crossing any resonance.

현장 불평형 응답을 이용한 로터-베어링 시스템의 매개변수 규명 연구 (A Study on Identifying Dynamic Characteristic Parameters of Rotor Bearing Systems Using Field Measurement Data of Unbalance Responses)

  • 이동환;김영일;박노길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.605-611
    • /
    • 2000
  • Presented in this paper is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is not only possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speeds but also the damping ratio and eccentricity of the system can be identified at the same time. Two types of test rotors were tested on the Rotor Dynamics Test Facility at the Rotordynamics Lab., KIMM, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends of direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

  • PDF

소형 가스터빈 회전체의 위험속도 해석 (Critical Speed Analysis of a Small Gas Turbine Rotor)

  • 김영철;하진웅;명지호
    • 한국유체기계학회 논문집
    • /
    • 제12권3호
    • /
    • pp.26-30
    • /
    • 2009
  • This paper predicts the critical speeds of a 5MW industrial gas turbine by using commercial rotordynamic tool, DYNAMICS 4.3. The gas turbine is operated at 12,975 rpm on squeeze film dampers. The stiffness of the squeeze film dampers are estimated. The critical speeds of the gas turbine rotor are calculated to have a sufficient separation margin (2%) from the 1st bending mode and pass over 2 rigid body modes below 4,000 cpm. This paper discussed the coupling effects on the dynamic response of the gas turbine.

초기응력을 갖는 차세대 광디스크의 진동 특성 (Vibration Characteristics of a New Optical Disk with Initial Stress)

  • 김재관;이승엽
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2513-2519
    • /
    • 2000
  • Free vibration characteristics of an initially stressed CD/DVD disk, which is designed for increasing critical speeds of current optical disks, are analyzed using the Rayleigh-Ritz technique based on variational formulations. Natural frequencies of the new disk depend on membrane stresses caused by disk rotation as well as residual stresses imposed during the cooling process of the injection molding. Critical speeds are calculated for the various initial patterns of radial and circumferential stresses. Initially imposed tensile stresses increase the natural frequencies of all the vibration modes except zero nodal diameter mode, whose natural frequency is independent of circumferential stress. A new disk with initial tensile stress of 0.5MPa is shown to have its critical speed about 30 % higher than the current optical disk.

터보분자펌프의 회전체 동해석 (Rotordynamic Analysis of a Turbomolecular Pump)

  • 한정삼
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.764-765
    • /
    • 2011
  • In this paper, rotordynamic analyses of the Campbell diagram, critical speeds, and harmonic responses for a TMP rotor system are performed. Since the finite element model of the TMP rotor system has a very large number of degrees of freedom because of its complex geometry, and dynamic analyses for investigating the critical speeds, stability, and harmonic response are repeated for various design parameters, model order reduction (MOR) is necessary to reduce the computational cost. The Krylov-based model order reduction via moment matching significantly speeds up the rotordynamic analyses for the TMP rotor system.

  • PDF

모델차수축소기법을 이용한 회전체의 동해석 (Dynamic Analysis of Rotating Bodies Using Model Order Reduction)

  • 한정삼
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

고속열차 감속기의 상시감시시스템 설계 및 가변속주행시 안정성 향상을 위한 동특성해석 (Dynamic Characteristics Analysis for the Online Monitoring System Designing KTX MRU and Improvement of the Stability Related Variable High Speed)

  • 박병수;김진우;최상락;송영천
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.301-307
    • /
    • 2013
  • MRU(motor reduction unit) for KTX is a assembled complex structure that is equipped with a lot of parts at the express train KTX and that is the core power source operating variable speeds. This study is recorded the dynamic characteristics analysis results tested by EMA which is done through the parts and assembly test, transient analysis and stoped train test in order to design the online monitoring system for KTX MRU. And the mode shapes result from critical vibration frequency explain the relation with variable speeds of express train over 250 km/hr. Also these variable speeds make variable operational frequencies at pinion, axle gear mesh frequency and normal bearing fault frequencies. As the specified speed can make resonance with natural frequencies of the MRU, for the train operating stability, this study also presents the MRU's critical speeds calculated by the each train speed.

베어링 대의 등가 동강성에 관한 고찰 (A Study on the Equivalent Dynamic Stiffness of Bearing-pedestal)

  • 김희수;배용채;이현
    • 한국소음진동공학회논문집
    • /
    • 제16권5호
    • /
    • pp.452-456
    • /
    • 2006
  • The critical speeds and mode shapes are most important to determine the behaviors of rotor in designing rotating machinery. As the capacity and span of turbine-generator increases, the turbine-generator system is composed of many components such as bearings, pedestal, turbine and hood and so on. Also, it is getting flexible and has many critical speeds. Especially, as the characteristics of bearing-pedestal are very complicated, they affect the entire vibration characteristics of turbine-generator system. In this paper, it is observed how to determine the equivalent dynamic stiffness of bearing-pedestal by analytical and experimental method.

베어링-페데스탈의 등가 강성에 관한 고찰 (A Study on the Equivalent Dynamic Stiffness of Bearing-Pedestal)

  • 김희수;배용채;이현;이대성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.263-266
    • /
    • 2005
  • The critical speeds and mode shapes are most important to determine the behaviors of rotor in designing rotating machinery. As the capacity and the span of turbine-generator increases, the turbine-generator system has many components such as bearings, pedestal, turbine and baseplates etc. and it is getting flexible and has many critical speeds. Especially, the characteristics of bearing-pedestal are very complicated and then they affect the entire vibration characteristics of turbine-generator system. In this paper, it is observed how to determine the equivalent dynamic stiffness of bearing-pedestal by analytic and experimental method.

  • PDF