• Title/Summary/Keyword: critical nonlinearity

Search Result 117, Processing Time 0.022 seconds

Nonlinear static and dynamic analyses of reinforced concrete buildings - comparison of different modelling approaches

  • Carvalho, Goncalo;Bento, Rita;Bhatt, Carlos
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.451-470
    • /
    • 2013
  • It generally accepted that most building structures shall exhibit a nonlinear response when subjected to medium-high intensity earthquakes. It is currently known, however, that this phenomenon is not properly modelled in the majority of cases, especially at the design stage, where only simple linear methods have effectively been used. Recently, as a result of the exponential progress of computational tools, nonlinear modelling and analysis have gradually been brought to a more promising level. A wide range of modelling alternatives developed over the years is hence at the designer's disposal for the seismic design and assessment of engineering structures. The objective of the study presented herein is to test some of these models in an existing structure, and observe their performance in nonlinear static and dynamic analyses. This evaluation is done by the use of two of a known range of advanced computer programs: SAP2000 and SeismoStruct. The different models will focus on the element flexural mechanism with both lumped and distributed plasticity element models. In order to appraise the reliability and feasibility of each alternative, the programs capabilities and the amount of labour and time required for modelling and performing the analyses are also discussed. The results obtained show the difficulties that may be met, not only in performing nonlinear analyses, but also on their dependency on both the chosen nonlinear structural models and the adopted computer programs. It is then suggested that these procedures should only be used by experienced designers, provided that they are aware of these difficulties and with a critical stance towards the result of the analyses.

The Influence of Unbonded Prestressing Force on the Lateral Torsional Stability of Girders (비부착 긴장력이 거더의 횡비틀림 안정성에 미치는 영향)

  • Lee, Jong-Han;Lee, Kun-Joon;Kighuta, Kabuyaya
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • An experiment was carried out to evaluate the lateral torsional stability of a girder with respect to the location and magnitude of prestressing force. The test of evaluating the lateral displacement and stability of a girder could cause an unexpected result due to various parameters, such as material nonlinearity, initial geometric imperfections, prestressing force, and loading and support conditions. Therefore, a small model testing was programmed to control the various parameters and assess the lateral torsional stability with respect to the prestressing force. This study proposed and fabricated an experimental apparatus that can satisfy the loading and in-plane and out-of-plane support conditions and also contol the prestressing force. The result of the experiment showed that the lateral torsional stability increased when the prestressing force was applied in the bottom flange of the girder. As a result, this study proposed an analytical equation that can account for the effect of the prestressing force in the lateral torsional stability of a girder.

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier (Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.49-56
    • /
    • 2005
  • Memory effect, which influence the performance of Doherty amplifier, become more significant and critical in designing these circuits as the modulation signal bandwidth and operation power level increase. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a Doherty amplifier's distortion generation. Also this raper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. This expression has been used in the construction of an electrothermal model for the Doherty amplifier. Parameters for the nelv proposed behavior model were determined from the Doherty amplifier measurements obtained under different excitation conditions. This study led us to conclude that the effects of the transistor self-heating phenomenon are important for signals with wideband modulation bandwidth(ex. W-CDMA or UMTS signal). Doherty amplifier with electrothermal memory effect compensator enhanced ACLR performance about 20 dB than without electrothemal memory effect compensator. Experiment results were mesured by 60W LDMOS Doherty amplifier and electrothermal memory effect compensator was simulated by ADS.

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Development of Stochastic Decision Model for Estimation of Optimal In-depth Inspection Period of Harbor Structures (항만 구조물의 최적 정밀점검 시기 추정을 위한 추계학적 결정모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-72
    • /
    • 2016
  • An expected-discounted cost model based on RRP(Renewal Reward Process), referred to as a stochastic decision model, has been developed to estimate the optimal period of in-depth inspection which is one of critical issues in the life-cycle maintenance management of harbor structures such as rubble-mound breakwaters. A mathematical model, which is a function of the probability distribution of the service-life, has been formulated by simultaneously adopting PIM(Periodic Inspection and Maintenance) and CBIM(Condition-Based Inspection and Maintenance) policies so as to resolve limitations of other models, also all the costs in the model associated with monitoring and repair have been discounted with time. From both an analytical solution derived in this paper under the condition in which a failure rate function is a constant and the sensitivity analyses for the variety of different distribution functions and conditions, it has been confirmed that the present solution is more versatile than the existing solution suggested in a very simplified setting. Additionally, even in that case which the probability distribution of the service-life is estimated through the stochastic process, the present model is of course also well suited to interpret the nonlinearity of deterioration process. In particular, a MCS(Monte-Carlo Simulation)-based sample path method has been used to evaluate the parameters of a damage intensity function in stochastic process. Finally, the present stochastic decision model can satisfactorily be applied to armor units of rubble mound breakwaters. The optimal periods of in-depth inspection of rubble-mound breakwaters can be determined by minimizing the expected total cost rate with respect to the behavioral feature of damage process, the level of serviceability limit, and the consequence of that structure.

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing (납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어)

  • Park, Kyu-Sik;Jung, Hyun-Jo;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.51-63
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

Seismic Analysis of Tunnel in Transverse Direction Part I: Estimation of Seismic Tunnel Response via Method of Seismic Displacement (터널 횡방향 지진해석 Part I: 응답변위법을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.57-70
    • /
    • 2010
  • Recent earthquakes have demonstrated that the tunnels, which were once considered to be highly resistant to earthquakes, are susceptible to substantial damage under severe seismic loading. Among various modes of deformation under an earthquake loading, the response of the tunnel in the transverse direction is known to be the critical mode. This paper investigates the seismic response of the tunnel in the transverse direction using the method of seismic displacement, which is a type of pseudo-static analysis. Firstly, the methods of calculating the ground deformation are compared. It is shown that the single and double cosine may not provide an accurate estimation of the ground deformation, and that a one-dimensional site response analysis needs to be performed for a more reliable evaluation. Secondly, the tunnel responses are calculated using the simplified, analytical, and numerical solutions. It is demonstrated that the simplified method provides poor estimates of the tunnel response ground deformation. The analytical solution is shown to be effective in modeling circular tunnels in uniform ground, but has serious limitation in modeling tunnel response in non-uniform ground. Numerical analyses are shown to be applicable to all cases, and give the most accurate estimates of the tunnel response. It is also demonstrated that the linear solutions can be so conservative that the soil nonlinearity needs to be accounted for more accurate evaluation of the tunnel response.