• Title/Summary/Keyword: critical fracture energy

Search Result 132, Processing Time 0.026 seconds

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

A Study on the Impact Fracture Behavior of Glass Fiber Polypropylene Composites (GF/PP 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.421-427
    • /
    • 1999
  • The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperatures range of the ambient temperature to $-50^{\circ}C$ The critical fracture energy increase as fiber volume fraction ratio increased The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up. Major failure mechanisms can be classfied such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact (저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.