• 제목/요약/키워드: critical energy

검색결과 2,336건 처리시간 0.025초

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

Evaluation of Saxton Critical Experiments

  • Joo, Hyung-Kook;Noh, Jae-Man;Jung, Hyung-Guk;Kim, Young-Il;Kim, Young-Jin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.191-196
    • /
    • 1997
  • As a part of International Criticality Safety Benchmark Evaluation Project (ICSBEP), SAXTON critical experiments were reevaluated. The effects on $K_{eff}$ of the uncertainties in experiment parameters, fuel rod characterization, soluble boron, critical water level, core structure, $^{241}$ Am and $^{241}$ Pu isotope number densities, random pitch error, duplicated experiment, axial fuel position, model simplification, etc., were evaluated and added in benchmark-model $k_{eff}$. In addition to detailed model, the simplified model for Saxton critical experiments was constructed by omitting the top, middle, and bottom grids and ignoring the fuel above water.r.r.

  • PDF

Energy Stability Analysis on the Onset of Buoyancy-Driven Convection in a Horizontal Fluid Layer Subject to Evaporative Cooling

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.142-147
    • /
    • 2019
  • The onset of buoyancy-driven convection in an initially isothermal and quiescent horizontal fluid layer was analyzed theoretically. It is well-known that at the critical Rayleigh number $Ra_c=669$ convective motion sets in with a constant-heat-flux cooling through the upper boundary. Here, based on the momentary instability concept, the dimensionless critical time ${\tau}_m$ to mark the onset of convective motion for Ra > 669 was analyzed theoretically. The energy method under the momentary stability concept was used to find the critical conditions as a function of the Rayleigh number Ra and the Prandtl number Pr. The predicted critical conditions were compared with the previous theoretical and experimental results. The momentary stability criterion gives more reasonable wavenumber than the conventional energy method.

RELAP5 / MOD3/ KAERI의 임계유동모델을 위한 실제적 배출계수의 정량화 (Quantification of Realistic Discharge Coefficients for the Critical Flow Model of RELAP5/MOD3/KAERl)

  • 권태순;정법동;이원재;이남호;허재영
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.701-709
    • /
    • 1995
  • RELAP5 /MOD3/KAERl의 임계유동모델을 위한 실제적인 배출계수들을 9개의 MARVIKEN 임계유동실험 의 평가계산을 통하여 과냉각과 이상임계유동에 대하여 구하였다. 선택된 실험에는 높은 초기 과냉각도와 큰 노즐 세 장비(L/D)인 것들이 포함되었다. 코드의 평가결과는 RELAP5/MOD3/KAERI은 과냉각임계유동을 크게 예측하고 이 상임계유동은 작게 예측함을 보이고 있다. 이러한 결과들을 이용하여 임계유동모델의 실제적인 배출계수들을 반복법으로 정량화 하였다. 실제적인 배출계 수는 과냉각임계유동이 0.89 그리고 이상임계유동이 1.07로 결정되었으며 관련 표준편차는 각 각 0.0349과 0.1189이다. 본 연구로부터 얻어진 결과는 대형냉각재 상실사고의 실제적인 계통반응 계산과 비상노심냉각계통 성능평가에 적용할 수 있다.

  • PDF

고장력강 용접부에 있어서 한계 COD값과 V charpy충격치와의 상관성에 관한 연구 (A study on the correlation between V charpy absorbed energy and critical COD value in the welded parts of high tensil strength steel under various welding methods)

  • 김영식;김충해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.57-67
    • /
    • 1988
  • Although handicapped by the inability to bridge the size gap between small laboratory sample and large engineering component, the V charpy test sample method does possess certain advantages, such as each of preparation, simplicity of test method, speed, low cost in test machinery, and low cost per test. On the other hand, the COD test method does posses advantages, which reduce the size gap between the laboratory sample and actual engineering component. Consequently, the correlation between V charpy absorbed energy and the critical COD value is required for estimating critical COD value from the simple V charpy test results. In this paper, the high tensile strength steel AH36 plate specimens having a single edge cracked notch were investigated to find out the correlation between V charpy absorbed energy and critical COD value in the welded parts under such various welding methods as shielded metal arc welding, the submerged arc welding and the electro gas welding by means of V charpy impact test and static 3-point bending test. Main results obtained are as follow ; 1. The relationships between V charpy absorbed energy Wc' and critical COD value ($\delta_c$)show; $\delta_c$=0.0065 Wc'+0.1906. 2. Ductile- brittle transition behaviours can be estimated by means of fracture appearance and general yielding behaviours. 3. The V charpy absorbed energy of SMAW is higher than that of SAW, EGW and similar relationships are obtained in the COD tests.

  • PDF

GF/PP 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Glass Fiber Polypropylene Composites)

  • 엄윤성
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.421-427
    • /
    • 1999
  • The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperatures range of the ambient temperature to $-50^{\circ}C$ The critical fracture energy increase as fiber volume fraction ratio increased The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up. Major failure mechanisms can be classfied such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

CLS 시편의 탄성일인자 유도 및 이를 적용한 열가소성 Graphite/Peek 복합재의 파괴인성 $G_c$ 측정 (Elastic Work Factor of CLS Specimen and Determination of $G_c$ for Graphite/Peek Composites by Using the Elastic Work Factor)

  • 이경엽
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2792-2799
    • /
    • 1996
  • It was shown in the previous study that the numerically derived elastic work factor for CLS specimen was independent of fiber direction for a unidirectional case. Also, it was proposed the elastic work factor could be used to determine energy release rate from a single test record. In the present study, elastic work factor was derived from a simple beam theory to investigate its dependence on material property and geometric condition. Also, the elastic work factor of CLS specimen was applied experimentally to determine critical energy release rate in order to prove its validity determining critical energy release rate from a single specimen. For this purpose, critical energy release rate determined using the elastic work factor was compared with that determined by the compliance method. The results showed that while elastic work factor is affected by $t_2/t_1$ and $L_2/L_1$ it is independent of fiber angle for a unidirectional case. It was also found that critical energy release rates determined by both methods are comparable each other, thus elastic work factor approach can be used to determine energy release rate from a single test specimen.

The critical angle of seismic incidence of transmission tower-line system based on wavelet energy method

  • Tian, Li;Dong, Xu;Pan, Haiyang;He, Xiaoyu
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.387-398
    • /
    • 2019
  • On the basis that ground motions may arrive at a structure from any horizontal direction and that different directions of seismic incidence would result in different structural dynamic responses, this paper focuses on orienting the crucial seismic incidence of transmission tower-line systems based on the wavelet energy method. A typical transmission tower-line system is chosen as the case study, and two finite element (FE) models are established in ABAQUS, with and without consideration of the interaction between the transmission towers and the transmission lines. The mode combination frequency is defined by considering the influence of the higher-order modes of the structure. Subsequently, wavelet transformation is performed to obtain the total effective energy input and the effective energy input rate corresponding to the mode combination frequency to further judge the critical angle of seismic incidence by comparing these two performance indexes under different seismic incidence angles. To validate this approach, finite element history analysis (FEHA) is imposed on both FE models to generate comparative data, and good agreement is found. The results demonstrate that the wavelet energy method can forecast the critical angle of seismic incidence of a transmission tower-line system with adequate accuracy, avoiding time-consuming and cumbersome computer analysis. The proposed approach can be used in future seismic design of transmission tower-line systems.

GF/PP 복합재료의 충격파괴거동에 대한 온도효과 (Temperature Effect on Impact Fracture Behavior of GF/PP Composites)

  • 고성위;엄윤성
    • 수산해양기술연구
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.