• Title/Summary/Keyword: critical energy

Search Result 2,319, Processing Time 0.035 seconds

Design Study of Adhesively Bonded Structures

  • Chung, Jae-Ung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2009
  • The failure responses of adhesively bonded, hat stiffened structures are studied through numerical analysis using the finite element method. The responses are evaluated numerically for the bonded hat section/substrate structures containing different combinations of materials. It is studied what kind of material combinations causes the easier crack initiation in the structure. This study is conducted under plane strain conditions and J-integral via a commercial code ABAQUS as a total critical energy release criterion was used for observation on crack initiation. Also, the influence of adhesive on the structure is studied.

Instabilities of Natural Convection in a Shallow Fluid Layers (얇은 유체층(流體層)에 있어서 자연대류(自然對流)의 불안정성(不安定性))

  • Yang, Soong-Hyo;Park, Chan-Kuk
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The characteristics of thermal instabilities of natural convection in a horizontal fluid layer bounded below by a rigid plate and above by an interface with a passive gas is presented. The critical Grashof number decreases as the surface tension gradient effect (Marangoni effect) at the interface increases and the flow remains unstable for a critical Marangoni number depending on Prandtl numbers. These results are in substantial agreement with those of Smith and Davis.

  • PDF

Critical heat flux measurement experiment to improve safety of copper nano-particle coated heat exchanger (구리나노입자가 코팅된 열교환기의 안전성 향상을 위한 임계 열유속 측정실험)

  • Mo, Yong-Hyun;Kim, Nam-Jin;Jeon, Yong-Han;Lee, Deok-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.317-322
    • /
    • 2017
  • When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Verification of Safety Critical Software

  • Son, Ki-Chang;Chun, Chong-Son;Lee, Byeong-Joo;Lee, Soon-Sung;Lee, Byung-Chai
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.594-601
    • /
    • 1996
  • To assure quality of safety critical software, software should be developed in accordance with software development procedures and rigorous software verification and validation should be performed. Software verification is the formal act of reviewing, testing or checking, and documenting whether software components comply with the specified requirements for a particular stage of the development phase [1]. New software verification methodology was developed and was applied to the Shutdown System No. 1 and 2(SDS1,2) for Wolsong 2, 3 and 4 nuclear power plants by Korea Atomic Energy Research Institute(KAERI) and Atomic Energy of Canada Limited(AECL) in order to satisfy new regulation requirements of Atomic Energy Control Board(AECB). Software verification methodology applied to SDS1 for Wolsong 2, 3 and 4 project will be described in this paper. Some errors were found by this methodology during the software development for SDS1 and were corrected by software designer. Output from Wolsong 2, 3 and 4 project have demonstrated that the use of this methodology results in a high quality, cost-effective product.

  • PDF

An algorithm for evaluating time-related human reliability using instrumentation cues and procedure cues

  • Kim, Yochan;Kim, Jaewhan;Park, Jinkyun;Choi, Sun Yeong;Kim, Seunghwan;Jung, Wondea;Kim, Hee Eun;Shin, Seung Ki
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.368-375
    • /
    • 2021
  • The performance time of human operators has been recognized as a key aspect of human reliability in socio-complex systems, including nuclear industries. Because of the importance of the time factor, most existing human reliability assessment methods provide ways to quantify human error probabilities (HEPs) that are associated with the performance time. To quantify such kinds of HEPs, it is crucial to rationally predict the length of time required and time available and compare them. However, there have not been detailed guidelines that identify the critical cue presentation time or initial time of human performance, which is important to calculate the time information. In this paper, we introduce a time-related HEP calculation technique with a decision algorithm that determines the critical cue and its timing. The calculation process is presented with the application examples. It is expected that the proposed algorithm will reduce the variability in the time-related reliability assessment and strengthen the scientific evidence of the assessment process. The detailed description is provided in the technical report KAERI/TR-7607/2019.

CRITICAL HEAT FLUX ENHANCEMENT IN FLOW BOILING OF Al2O3 AND SiC NANOFLUIDS UNDER LOW PRESSURE AND LOW FLOW CONDITIONS

  • Lee, Seung-Won;Park, Seong-Dae;Kang, Sa-Rah;Kim, Seong-Man;Seo, Han;Lee, Dong-Won;Bang, In-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.429-436
    • /
    • 2012
  • Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristic of nanofluids is their ability to significantly enhance the CHF. Nanofluids are nanotechnology-based colloidal dispersions engineered through the stable suspension of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol.% $Al_2O_3$/water nanofluid, and SiC/water nanofluid. It was found that the CHF of the nanofluids was enhanced and the CHF of the SiC/water nanofluid was more enhanced than that of the $Al_2O_3$/water nanofluid.

A Minimalist Model of Single Molecule Spectroscopy in a Dynamic Environment Studied by Metadynamics

  • Oh, In-Rok;Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.980-986
    • /
    • 2012
  • In this paper we develop a minimalist model of single molecule spectroscopy in a dynamic environment. Our model is based upon a lattice system consisting of a probe molecule embedded in an Ising-model like environment. We assume that the probe molecule interacts with the Ising spins via a dipole-dipole potential, and calculate free energy curves and lineshapes of the system. To investigate fluctuation behavior of the system we exploit the metadynamics sampling method. In particular, using the method, we calculate the free energy curve of magnetization of the lattice and that of the transition energy of the probe molecule. Furthermore, we compare efficiencies of three different sampling methods used; unbiased, umbrella, and metadynamics sampling methods. Finally, we explore the lineshape behavior of the probe molecule as the system undergoes a phase transition from a sub-critical and to a super-critical temperature. We show that the transition energy of a probe molecule is broadly distributed due to the heterogeneous, local environments.