• 제목/요약/키워드: critical damping ratio

검색결과 74건 처리시간 0.029초

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.

곡관내 자성유체 PLUG의 진동특성 (The Oscillation Characteristics of a Magneticfluid Plug in Curved Tube)

  • 전운학;이행남
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.46-57
    • /
    • 1995
  • The aim of the present study is to provide fundamental informations for the development of magneticfluid actuator. To achieve the aim, oscillation characteristics of the magneticfluid plug are investigated by experiment for the various length and position of the magneticfluid plug and the frequency of magnetic field. The oscillation characteristics are obtained. Amplitude, natural frequency, phase shift and damping ratio, are compared with theoretical values. From the study, the following conclusive remarks can be made. The experimental equation for the magnetic field is obtained. The critical magneticfluid length exists and its value is about 70mm. The range of the damping ratio and fluid loss coefficient obtained by experiment are 0.1~0.2 and 30~100, respectively. Comparison between experimental and theoretical results of oscillation characteristics shows good agreement in the high frequency range. Meanwhile, in the low frequency range, there appears little discrepancies(5% in the frequency and amplitude and 10% in phase difference and damping ratio) with each other.

  • PDF

지지점 간극을 갖는 다점지지 관의 지지점 간극 크기에 따른 감쇠특성 비교 (Loosely supported multi-span tube damping according to the support clearance)

  • 이강희;강흥석;신창환;김재용;이치영;박태정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.402-403
    • /
    • 2014
  • Damping of multi-span tube with loose supports according to the finite support clearances is investigated through the experimental modal analysis. Loose intermediate support leads to strong nonlinearity in tube dynamics, provides statistical nature, and increases tube damping through impacting and friction at the supports. Fraction of critical damping was estimated by the modal curve fitting to parameter estimation from the measured frequency response functions. Magnitude of random excitation force, which can reproduce the in-situ excitation in operating environment, was maintained as constant value with a fine tolerance during vibration testing. Range of input force was carefully selected to cover from the low magnitude excitation for linearly behaved tube motion to high magnitude of force for nonlinearly-behaved tube motion. Estimated critical damping ratio shows scatters in data and tends to increase as the magnitude of rising force and decrease with upward frequency variation. Larger size of support gap increases multi-span tube damping for high magnitude of excitation.

  • PDF

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

윤활유와 베어링 볼을 내장한 원통형 구조물의 감쇠특성에 관한 실험적 연구 (Experimental study on the damping characteristics of a cylindrical structure containing oil and bearing balls)

  • 류봉조;송선호
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.107-114
    • /
    • 1996
  • 윤활유와 베어링 볼을 내장한 원통형 구조물이 외부로부터의 굽힘 하중을 받을 때의 진동감쇠 특성을 조사하였다. 심험대상인 원통형 구조물의 내부에는 윤활유의 점성력과 베어링 볼의 관성력에 의한 저항력이 발생하며 이 저항력에 의하여 원통형 구조물의 진동이 감쇠된다. 윤활유와 베어링 볼의 감쇠력이 최대가 되는 최적 혼합체를 찾기 위하여 점도가 다른 윤활유와 재질 및 직경이 다른 베어링 불을 알루미늄관에 넣고 감쇠력을 측정하였다. 실험 결과를 무차원 변수를 사용하여 분석하였으며 수평 원통과 수직 원통의 감쇠율을 비교하였다. 수령 원통의 경우에 감쇠율의 변화가 거의 없었으나 수직원통의 경우 원통 길이에 대한 베어링 볼 직경 의 비율이 약 0.28 이상부터 감쇠율이 증가하기 시작하였다. 볼의 직경과 원통 직경 비에 대한 감쇠율의 변화와 세장비 및 중력 효과에 대한 감쇠율의 영향도 조사하였다.

  • PDF

철도교량의 감쇠비 추정에 관한 연구 (A Study of Estimation of Damping Ratio for Railway Bridges)

  • 윤혜진;진원종;최은석;강재윤;곽종원;김병석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2430-2434
    • /
    • 2011
  • Dynamic response is an important consideration because of the possibility of resonance according to KTX running over a railway bridges. When KTX runs over the bridge at critical speed, dynamic response is very depending on damping ratio. Current damping ratio for design of high-speed railway bridges adopted EUROCODE without verification of domestic railway bridges. The purpose of this study is to obtain the coherent damping ratio of high-speed railway bridges. Free vibration signal after KTX runs over a high-speed railway bridge was applied. The representative value from distribution of damping ratio was considered.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.