• Title/Summary/Keyword: critical currents

Search Result 160, Processing Time 0.02 seconds

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.

The Characteristics of Current Distribution and Electrical Insulation on High-Tc Superconducting Cable (고온 초전도 케이블의 전류 분포 및 전기절연 특성)

  • ;;;;Takataro Hamajima
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.271-277
    • /
    • 2003
  • It is important to control layer current distributions of coaxial multi-layer HTS cables, because a homogeneous layer current distribution decreases AC loss and can supply the largest operational current. We have extended the theory that treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contacting resistance between the cable and terminals. It is important to investigate the current distribution under the condition of operational current more than the critical current of cable, because the cable has experiences of fault current. In order to verify the extended theory, we have fabricated a two layers cable with the same twisting layer pitch. It was observed that almost all the operational current less than the critical current flowed on the outer layer because of its lower inductance. In case of operational current more than critical currents of layers, the flux flow resistances affect strongly current waveform and thereby the currents of layers were determined by the flux flow resistances. And we investigated breakdown characteristics in $LN_{2}$/paper composite insulation system for the application to a HTS cable. In this experiment, we got some information out of that the electrical characteristics of the insulation materials depends on the condition of butt gap.

Uniformity of $YBa_2$$Cu_3$$O_7$ Step-edge Josephson Junctions (Y$Ba_2$$Cu_3$$O_7$ 모서리 죠셉슨 접합의 균일성)

  • Lee, S.G.;Hwang, Y.;Kim, J.T.
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2001
  • Uniformity of critical currents of YBa$_2$Cu$_3$O$_{7}$ step-edge Josephson junctions on SrTiO$_3$(100) substrates have been studied at various step-line angles. 15 identical junctions were made in series on each substrate that has a long straight step-edge line. Step-line angles studied were 0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$, and 45$^{\circ}$with respect to the crystal major axes of the substrate. Scattering of junction critical currents among the junctions on the same substrate increased with the step-line angle. Current-voltage curves showed standard resistively-shunted-junction (RSJ) characteristics in most of the 0$^{\circ}$junctions. However, the number of junctions showing RSJ behavior decreased with increasing step-line angle. Variations of detailed microstructure of the step-edge among junctions, which are coupled with the d-wave symmetry of YBa$_2$Cu$_3$O$_{7}$, are believed to be the main cause for the nonuniformity in the critical current.ent.

  • PDF

Fabrication and Test Results of an HTS Magnet with Pancake Windings Excited by Multiple Power Sources (별도전원으로 여자되는 팬케이크 권선형 고온초전도 마그넷의 제작과 특성 시험)

  • Lee, K.Y.;Hun, K.M.;Lee, Y.S.;Lee, H.J.;Cha, G.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.384-389
    • /
    • 2008
  • The cental magnetic field of an HTS magnet consisting of pancake windings can be increased if the magnet is excited by multiple power sources. Multiple power sources enable all pancake windings to conduct their critical currents. The HTS magnet consisting of pancake windings was excited by separate power sources in this paper. Critical currents of each pancake winding were determined by using optimization technique. Fabrication of the BSCCO magnet consisting of 10 pancake windings is described and test results of the BSCCO magnet are given. Central magnetic field and perpendicular magnetic field of the magnet excited by multiple power sources were compared with those of the magnet excited by a single power source.

Influence of Current Distributions on AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 교류손실 특성에 미치는 영향)

  • 정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.206-209
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The ac loss characteristics in the conductor have experimentally investigated. The loss tests indicate that the ac loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.e.

  • PDF

The Characteristics of Current Distribution of a Coaxial HTS Cable and Insulation of Mini-model Cable (동축 고온 초전도 케이블의 전류분포 및 mini-model 케이블의 전기절연)

  • ;;;;;Takataro Hamajima
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.47-50
    • /
    • 2003
  • In order to verify the extended theory, we have fabricated a two layers cable with the same twisting layer pitch. It was observed that almost all the operational current less than the critical current flowed on the outer layer because of its lower inductance. In case of operational current more than critical currents of layers, the flux flow resistances affect strongly current waveform and thereby the currents of layers were determined by the flux flow resistances. And we investigated withstand voltage, impulse voltage and breakdown characteristics of mini-model cable. In these test, the withstand voltage and impulse voltage test was satisfied and the breakdown voltage was 110kV.

  • PDF

Influence of Current Distributions on AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 교류손실 특성에 미치는 영향)

  • 정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.7-10
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The ac loss characteristics in the conductor have experimentally investigated. The loss tests indicate that the ac loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.e.

  • PDF