• Title/Summary/Keyword: critical coefficient

Search Result 908, Processing Time 0.029 seconds

The Development of Performance Scoring Rubrics for the Inquiry-Based General Chemistry Experiments (탐구적 일반화학실험 수행 평가 준거 개발)

  • Kang, Soon-Hee;Kim, Yang-Hyun;Park, Jong-Yoon
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.507-515
    • /
    • 1999
  • This study is to develope the performance scoring rubrics for the inquiry-based experiments of general chemistry course in the college of education. Two types of analytic scoring rubrics have been developed for nine different experiments. The first one is to assess scientific process skills from the written experimental reports. These analytic scoring rubrics include seven process skills selected from the Lawson's 'creative and critical thinking skills' and other known process skills. The second one is to assess the individual manipulative skills and experimental attitudes through direct observations by the teacher. The content validity of all scoring rubrics was testified by six science educators. Also the inter-scorer reliability of analytic scoring rubrics administered on the students' experimental reports was examined. The correlation coefficient between the scores obtained from the experiments and those of the written test for theoretical knowledges was found to be r=.663(p <.01). From the variance($r^2$=.440), we would say indirectly that the 56% of this experimental assessment does not overlap with the theoretical knowledges test and assesses students' science process skills, manipulative skills, and attitudes.

  • PDF

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis (회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

The Effect of Control-Ownership Wedge on Stock Price Crash Risk (소유지배 괴리도가 주가급락위험에 미치는 영향)

  • Chae, Soo-Joon;Ryu, Hae-Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.7
    • /
    • pp.53-59
    • /
    • 2018
  • Purpose - This study examines the effect of control-ownership wedge on stock crash risk. In Korea, controlling shareholders have exclusive control rights compared to their cash flow rights. With increasing disparity, controlling shareholders abuse their power and extract private benefits at the expense of the minority shareholders. Managers who are controlling shareholders of the companies tend not to disclose critical information that would prevent them from pursuing private interests. They accumulate negative information in the firm. When the accumulated bad news crosses a tipping point, it will be suddenly released to the market at once, resulting in an abrupt decline in stock prices. We predict that stock price crash likelihood due to information opaqueness increases as the wedge increases. Research design, data, and methodology - 831 KOSPI-listed firm-year observations are from KisValue database from 2005 to 2011. Control-ownership wedge is measured as the ratio (UCO -UCF)/UCO where UCF(UCO) is the ultimate cash-flow(control) rights of the largest controlling shareholder. Dependent variable CRASH is a dummy variable that equals one if the firm has at least 1 crash week during a year, and zero otherwise. Logistic regression is used to examine the relationship between control-ownership wedge and stock price crash risk. Results - Using a sample of KOSPI-listed firms in KisValue database for the period 2005-2011, we find that stock price crash risk increases as the disparity increases. Specifically, we find that the coefficient of WEDGE is significantly positive, supporting our prediction. The result implies that as controlling shareholders' ownership increases, controlling shareholders tend to withhold bad news. Conclusions - Our results show that agency problems arising from the divergence between control rights and cash flow rights increase the opaqueness of accounting information. Eventually, the accumulated bad news is released all at once, leading to stock price crashes. It could be seen that companies with high control-ownership wedge are likely to experience future stock price crashes. Our study is related to a broader literature that examined the effect of the control-ownership wedge on stock markets. Our findings suggest that the disparity is a meaningful predictor for future stock price crash risk. The results are expected to provide useful implications for firms, regulators, and investors.

Study on the performance characteristics of a new CO2 auto-cascade heat pump system (새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.191-196
    • /
    • 2017
  • Owing to the harmful environmental effects of HCFC and CFC refrigerants discovered in the late 20th century, the need for environmentally friendly refrigerants such as $CO_2$ in cooling systems has increased. Air-source $CO_2$ heat pumps that utilize ambient heat in cold winter are less efficient because of a higher evaporation temperature, and it is difficult to manufacture the components of the heat pump owing to a super critical pressure of over 130 bar. This research aims to overcome these disadvantages and improve energy efficiency by introducing a new lower-pressure $CO_2$ auto-cascade heat pump system. $CO_2$-R32 zeotropic refrigerants were considered for two-stage expansion and effective cooling heat exchanging system configurations of the new auto-cascade heat pump. The results indicated that the efficiency of the two-stage expansion system was higher than that of the original one-stage expansion system. Furthermore, the two-stage expansion system showed significant performance improvements when the two-stage expansion stage from highest pressure of 70bar, intermediate expansion pressure of 25bar, and final low pressure of 10bar is applied. The COP of the new two-stage auto-cascade system (2.332) was 43.15% higher than that of the present simple auto-cascade system (1.629). Refrigerants having an evaporation temperature of $-10^{\circ}C$ or lower can be obtained that can be easily evaporated in an evaporator even at a low temperature.

An Adaptive Decision-Feedback Equalizer Architecture using RB Complex-Number Filter and chip-set design (RB 복소수 필터를 이용한 적응 결정귀환 등화기 구조 및 칩셋 설계)

  • Kim, Ho Ha;An, Byeong Gyu;Sin, Gyeong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.2015-2024
    • /
    • 1999
  • Presented in this paper are a new complex-umber filter architecture, which is suitable for an efficient implementation of baseband signal processing of digital communication systems, and a chip-set design of adaptive decision-feedback equalizer (ADFE) employing the proposed structure. The basic concept behind the approach proposed in this paper is to apply redundant binary (RB) arithmetic instead of conventional 2’s complement arithmetic in order to achieve an efficient realization of complex-number multiplication and accumulation. With the proposed way, an N-tap complex-number filter can be realized using 2N RB multipliers and 2N-2 RB adders, and each filter tap has its critical delay of $T_{m.RB}+T_{a.RB}$ (where $T_{m.RB}, T_{a.RB}$are delays of a RB multiplier and a RB adder, respectively), making the filter structure simple, as well as resulting in enhanced speed by means of reduced arithmetic operations. To demonstrate the proposed idea, a prototype ADFE chip-set, FFEM (Feed-Forward Equalizer Module) and DFEM (Decision-Feedback Equalizer Module) that can be cascaded to implement longer filter taps, has been designed. Each module is composed of two complex-number filter taps with their LMS coefficient update circuits, and contains about 26,000 gates. The chip-set was modeled and verified using COSSAP and VHDL, and synthesized using 0.8- μm SOG (Sea-Of-Gate) cell library.

  • PDF

Selection of Optimal Vegetation Indices for Estimation of Barley & Wheat Growth based on Remote Sensing - An Application of Unmanned Aerial Vehicle and Field Investigation Data - (원격탐사 기반 맥류 작황 추정을 위한 최적 식생지수 선정 - UAV와 현장 측정자료를 활용하여 -)

  • Na, Sang-il;Park, Chan-won;Cheong, Young-kuen;Kang, Chon-sik;Choi, In-bae;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.483-497
    • /
    • 2016
  • Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of barley and wheat growth prediction equation by using UAV derived vegetation index. UAV imagery was taken on the test plots six times from late February to late June during the barley and wheat growing season. The field spectral reflectance during growing period for the 5 variety (Keunal-bori, Huinchalssal-bori, Saechalssal-bori, Keumkang and Jopum) were measured using ground spectroradiometer and three growth parameters, including plant height, shoot dry weight and number of tiller were investigated for each ground survey. Among the 6 Vegetation Indices (VI), the RVI, NDVI, NGRDI and GLI between measured and image derived showed high relationship with the coefficient of determination respectively. Using the field investigation data, the vegetation indices regression curves were derived, and the growth parameters were tried to compare with the VIs value.

Effects of Zoning Structure on Travel Demand Forecasts (존 체계 구축이 교통수요 추정에 미치는 영향에 관한 연구)

  • Han, Myeong-Ju;Seong, Hong-Mo;Baek, Seung-Han;Im, Yong-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • This paper investigates some critical errors influencing travel demand estimation in Korea Transportation Data Base (KTDB), and through this investigation reasonable traffic analysis zone (TAZ) size and internal trips ratio are analyzed. With varying zone size, the accuracy of travel demand estimation is studied and appropriate level of zone size in KTDB is also presented. For this purpose zonal structure consisting of location of zone centroid, number of centroid connecters has been constructed by social economic index, and then some descriptive statistical analyses such as F-test, coefficient of correlation are performed. From the results, this paper shows that the optimum levels of zone system were various according to the order and capacity of roads, and also shows that the smaller TAZ, the less error in this research. In conclusion, in order to improve accuracy of traffic demand estimation it is necessary to make zone size smaller.

A Study on Reliability and Applicability of Oriental Medical Music Therapy Using (음악요법의 한의학적 활용을 위한 신뢰도 및 적용 가능성 연구)

  • Song, Min Sun;Choi, Chan Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.674-682
    • /
    • 2014
  • The purpose of this study was to identify the effect of applying oriental music therapy and reliability of electroencephalogram(EEG) equipment. The study was approved by the critical trial judge committee from ${\bigcirc}{\bigcirc}$(IRB No. 2013-07) university. In order to measure test-retest reliability for 15 subjects, EEG for same participants were measured using same method mentioned above after 2 hours from the first measurement. Same provider implemented to each person at same time. Firstly, EEG was measured for 5 minutes after the subject with attached electrodes sat on chair comfortably for 10 minutes. Then, the subject was given mental stress using the four fundamental arithmetic operations for 5 minutes, and measured EEG for another 5 minutes. After that the subject sat on the chair comfortably listening oriental medicine music therapy for 5 minutes, and EEG was measured for 5 minutes again. There was no side effect regarding music therapy reported. Raw data, which was measured in each step, were converted through FFT(fast fourier transform) and analyzed after divided into certain frequency including ${\alpha}$ wave, ${\beta}$ wave, ${\theta}$ wave, immersion wave, stabilization wave, sef100 wave, and sef95 wave. Data were analyzed using wilcoxon signed rank test, Intraclass correlation coefficient(ICC), repeated measures ANOVA with the SPSS program. In test-retes method, there were significantly differences in ${\alpha}$ wave, ${\beta}$ wave, immersion wave, stability wave, ${\theta}$ wave, sef100 wave, sef95 wave. ICC has shown a high degree of reliability that it was ${\alpha}$ wave .877, ${\beta}$ wave .855, ${\gamma}$ wave .895, immersion wave .897, stability wave .816, ${\theta}$ wave .904, sef100 wave .910, sef95 wave .776. Also, there was a statistically significant difference in ${\alpha}$ wave after applying oriental music therapy. Based on these results, it is considered that average of the channel EEG and application of oriental music therapy would be practiced by increase of sample size using this machine.

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF