• Title/Summary/Keyword: critical buckling load

Search Result 356, Processing Time 0.021 seconds

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

Analytical study of buckling profile web stability

  • Taleb, Chems eddine;Ammari, Fatiha;Adman, Redouane
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.147-158
    • /
    • 2015
  • Elements used in steel structures may be considered as an assembly of number of thin flat walls. Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently rigid to constitute fixed supports to it. In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The objective is to determine, for a given web, flanges dimensions from which the latter can be considered as simple support for this web.

Hygrothermal effects on buckling of composite shell-experimental and FEM results

  • Biswal, Madhusmita;Sahu, Shishir Kr.;Asha, A.V.;Nanda, Namita
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1445-1463
    • /
    • 2016
  • The effects of moisture and temperature on buckling of laminated composite cylindrical shell panels are investigated both numerically and experimentally. A quadratic isoparametric eight-noded shell element is used in the present analysis. First order shear deformation theory is used in the present finite element formulation for buckling analysis of shell panels subjected to hygrothermal loading. A program is developed using MATLAB for parametric study on the buckling of shell panels under hygrothermal field. Benchmark results on the critical loads of hygrothermally treated woven fiber glass/epoxy laminated composite cylindrical shell panels are obtained experimentally by using universal testing machine INSTRON 8862. The effects of curvature, lamination sequences, number of layers and aspect ratios on buckling of laminated composite cylindrical curved panels subjected to hygrothermal loading are considered. The results are presented showing the reduction in buckling load of laminated composite shells with the increase in temperature and moisture concentrations.

Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection (초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.

Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core

  • Magnucki, Krzysztof;Jasion, Pawel;Szyc, Waclaw;Smyczynski, Mikolaj Jan
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.325-337
    • /
    • 2014
  • The strength and buckling problem of a five layer sandwich beam under axial compression or bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical model of the field of displacements, which includes a share effect and a bending moment, is presented. The system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the basis of the principle of stationary total potential energy. The equations are analytically solved and the critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the case of bended beam the static analysis has been performed to obtain the stress distribution across the height of the beam. For the axially compressed beam the buckling analysis was carried out to determine the buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare the results of the theoretical, numerical and experimental analyses.

Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation

  • Timesli, Abdelaziz
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Concrete is the most widely used substance in construction industry, so it's been required to improve its quality using new technologies. Nowadays, nanotechnology offers new frontiers for improving construction materials. In this paper, we study the stability analysis of the Single Walled Carbon Nanotubes (SWCNT) reinforced concrete cylindrical shell embedded in elastic foundation using the Donnell cylindrical shell theory. In this regard, we propose a new explicit analytical formula of the critical buckling load which takes into account the distribution of SWCNT reinforcement through the thickness of the concrete shell using the U, X, O and V forms and the elastic foundation using Winkler and Pasternak models. The rule of mixture is used to calculate the effective properties of the reinforced concrete cylindrical shell. The influence of diverse parameters on the stability behavior of the reinforced concrete shell is also discussed.

A Study on the Capacity of H-Shape Columns at Elevated Temperatures (온도상승에 따른 H-형강 기둥의 내력에 관한 연구)

  • Koo, Bon-Youl;Jang, Myung-Woong;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.87-95
    • /
    • 2004
  • This paper shows the study on the capacity of H-shape column at elevated temperature in fire. The main parameters are temperatures, slenderness ratios and load ratios. The physical properties of steel material at elevated temperatures are according to EC3 Part 1.2. The critical temperature of local buckling at elevated temperatures are lower when the yield strength of the material is higher, and when the ratios of width-thickness of plates are larger. The evaluation capacity of uniformly heated steel cloumns were considered to axial forces, moments of strong axis and weak axis to the LRFD.

  • PDF

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.