• Title/Summary/Keyword: crime data

Search Result 391, Processing Time 0.025 seconds

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

A Study on Construction of Crime Prevention System using Big Data in Korea (한국에서 빅데이터를 활용한 범죄예방시스템 구축을 위한 연구)

  • Kim, SungJun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.217-221
    • /
    • 2017
  • Proactive prevention is important for crime. Past crimes have focused on coping after death and punishing them. But with Big Data technology, crime can be prevented spontaneously. Big data can predict the behavior of criminals or potential criminals. This article discusses how to build a big data system for crime prevention. Specifically, it deals with the way to combine unstructured data of big data with basic form data, and as a result, designs crime prevention system. Through this study, it is expected that the possibility of using big data for crime prevention is described through fingerprints, and it is expected to help crime prevention program and research in future.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

Technique for Indentifying Cyber Crime Using Clue (수사단서를 이용한 동일 사이버범죄 판단기법)

  • Kim, Ju Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.767-780
    • /
    • 2015
  • In recent years, as smart phone penetration rate is growing explosively, new forms of cyber crime data is poured out beyond the limits of management system for cyber crime investigation. These new forms of data are collected and stored in police station but, some of data are not systematically managed. As a result, investigators sometimes miss the hidden data which can be critical for a case. Crime data is usually generated by computer which produces complex and huge data and records many logs automatically, so it is necessary to simplify a collected data and cluster by crime pattern. In this paper, we categorize all kinds of cyber crime and simplify crime database and extract critical clues relative to other cases. Through data mining and network-visualization, we found there is correlation between clues of a case. From this result, we conclude cyber crime data mining helps crime prevention, early blocking and increasing the efficiency of the investigation.

An Analysis of Relationship Between Word Frequency in Social Network Service Data and Crime Occurences (소셜 네트워크 서비스의 단어 빈도와 범죄 발생과의 관계 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.229-236
    • /
    • 2016
  • In the past, crime prediction methods utilized previous records to accurately predict crime occurrences. Yet these crime prediction models had difficulty in updating immense data. To enhance the crime prediction methods, some approaches used social network service (SNS) data in crime prediction studies, but the relationship between SNS data and crime records has not been studied thoroughly. Hence, in this paper, we analyze the relationship between SNS data and criminal occurrences in the perspective of crime prediction. Using Latent Dirichlet Allocation (LDA), we extract tweets that included any words regarding criminal occurrences and analyze the changes in tweet frequency according to the crime records. We then calculate the number of tweets including crime related words and investigate accordingly depending on crime occurrences. Our experimental results demonstrate that there is a difference in crime related tweet occurrences when criminal activity occurs. Moreover, our results show that SNS data analysis will be helpful in crime prediction model as there are certain patterns in tweet occurrences before and after the crime.

A Study on the Applicability of Data Mining for Crime Prediction : Focusing on Burglary (범죄예측에서의 데이터마이닝 적용 가능성 연구 : 절도범죄를 중심으로)

  • Bang, Seung-Hwan;Kim, Tae-Hun;Cho, Hyun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.309-317
    • /
    • 2014
  • Recently, crime prediction and prevention are the most important social issues, and global and local governments have tried to prevent crime using various methodologies. One of the methodologies, data mining can be applied at various crime fields such as crime pattern analysis, crime prediction, etc. However, there is few researches to find the relationships between the results of data mining and crime components in terms of criminology. In this study, we introduced environmental criminology, and identified relationships between environment factors related with crime and variables using at data mining. Then, using real burglary data occurred in South Korea, we applied clustering to show relations of results of data mining and crime environment factors. As a result, there were differences in the crime environment caused by each cluster. Finally, we showed the meaning of data mining use at crime prediction and prevention area in terms of criminology.

Artificial-Neural-Network-based Night Crime Prediction Model Considering Environmental Factors

  • Lee, Juwon;Jeong, Yongwook;Jung, Sungwon
    • Architectural research
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.

The Relationship between Residential Distribution of Immigrants and Crime in South Korea

  • Park, Yoonhwan
    • Journal of Distribution Science
    • /
    • v.16 no.7
    • /
    • pp.47-56
    • /
    • 2018
  • Purpose - This study aims to not only investigate spatial pattern of immigrants' residence and crime occurrences in South Korea, but shed light on how geographic distribution of immigrants and immigrant segregation affect crime rates. Research design, data, and methodology - Th unit of analysis is Si-Gun-Gu municipal level entities of South Korea. The crime data was obtained by Korea National Police Agency and two major types(violence and property) of crime were measured. Most demographic, social, and economic variables were derived from Korean Census Data in 2015. In order to examine spatial patterns of immigrants' distribution and crime rates in South Korea, the present study utilized GIS mapping technique and Exploratory Spatial Data Analysis(ESDA) tools. The causal linkage was investigated by a series of regression models using STATA. Results - Spatial inequality between urban metropolitan vs rural areas was visualized by mapping. Assuming large Moran's I value, spatial autocorrelation appeared to be quite strong. Several neighborhood characteristics such as residential stability and economic prosperity were found to be important factors leading to crime rate change. Residential distribution and segregation for immigrants were negatively significant in the regression models. Conclusions - Unlike the traditional arguments of social disorganization theory, immigrant segregation appeared to reduce violent crime rate and the high proportion of immigrants also turned out to be a crime prevention factor.

Crime Mapping Based on Experts' and Residents' Assessments of Neighborhood Environment

  • Kim, Jaecheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.213-220
    • /
    • 2017
  • This study examines the limitations of existing crime mapping that relies mainly on reported crime data, suggests a crime mapping method based on experts' and users' assessments of a neighborhood environment as an alternative approach, and conducts a case study on a real-world site by applying the suggested approach. According to the results of the case analysis, while the areas adjoining arterial roads with heavy pedestrian traffic were shown as high crime risk areas in the crime map based on actual reported crime data, the areas adjoining local roads with low pedestrian traffic were high-risk areas in the crime risk area map based on experts' and residents' evaluations. This study makes a contribution to the field in that it demonstrates the detailed application process of crime risk area mapping according experts' and residents' evaluations, compares the results with those of an existing crime map, and finally shows that the former can function as a complement to the latter.

Designing a Crime-Prevention System by Converging Big Data and IoT

  • Jeon, Jin-ho;Jeong, Seung-Ryul
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.115-128
    • /
    • 2016
  • Recently, converging Big Data and IoT(Internet of Things)has become mainstream, and public sector is no exception. In particular, this combinationis applicable to crime prevention in Korea. Crime prevention has evolved from CPTED (Crime Prevention through Environmental Design) to ubiquitous crime prevention;however, such a physical engineering method has the limitation, for instance, unexpected exposureby CCTV installed on the street, and doesn't have the function that automatically alarms passengers who pass through a criminal zone.To overcome that, this paper offers a crime prevention method using Big Data from public organizations along with IoT. We expect this work will help construct an intelligent crime-prevention system to protect the weak in our society.