• Title/Summary/Keyword: crevice corrosion

Search Result 77, Processing Time 0.025 seconds

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

Influence of Annealing Temperature on Microstructure and Pitting Corrosion Behavior of the 27Cr-7Ni Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Hye-Jin;Kong, Kyeong-Ho;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2014
  • Influence of annealing temperature on the microstructure and resistance to pitting corrosion of the hyper duplex stainless steel was investigated in acid and neutral chloride environments. The pitting corrosion resistance is strongly dependent on the microstructure, especially the presence of chromium nitrides ($Cr_2N$), elemental partitioning behavior and volume fraction of ferrite phase and austenite phase. Precipitation of deleterious chromium nitrides reduces the resistance to pitting corrosion due to the formation of Cr-depleted zone. The difference of PREN (Pitting Resistance Equivalent Number) values between the ferrite and austenite phases was the smallest when solution heat-treated at $1060^{\circ}C$. Based on the results of electrochemical tests and critical crevice temperature tests, the optimal annealing temperature is determined as $1060^{\circ}C$.

Relationship between the Applied Torque and CCT to obtain the Same Corrosion Resistance for the Plate and Cylindrical Shape Stainless Steels

  • Chang, Hyun Young;Kim, Ki Tae;Kim, Nam In;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.58-68
    • /
    • 2016
  • Many industries need the universal standard or technique to obtain the identical CCT regardless of specimen geometries. This study aimed to determine an appropriate applied torque to the cylindrical specimen defining the apparatus and the procedure to measure the temperature of initiating crevice corrosion in tubular shape products such as pipes, tubes and round rods etc; the test method also proved applicable to the plate type specimen. A series of experiments for CCT measurements with the plate type and cylindrical stainless steel specimens of various diameters with different microstructures (austenitic and duplex) and PRENs were conducted to determine the relationship among geometries on CCT. Thus, the apparatus that could measure the CCT of stainless steels with both plate and cylindrical geometries was newly designed. The use of the apparatus facilitated the same CCT value for both geometries only if the specimens were made of the same alloy. The applied torque can be calculated for various diameters of the cylindrical specimens using the following relation; Applied torque, $Nm=-0.0012D^2+0.019D+2.4463$ (D; the diameter of cylindrical specimen, mm). However, upwards of 35 mm diameter cylindrical specimens require 1.58Nm, which is the same torque for the plate type specimen; in addition, this test method cannot be used for cylindrical specimens of less than 15 mm diameter.

Prospects on the Use of Corrosion Rate Measurement Method for Stainless Steel (스테인리스 강의 부식 측정방법의 이용과 전망)

  • Choi, Yongseon;Lee, Jaewon;Park, Eunoak;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.294-301
    • /
    • 2021
  • As the number of cases of performance degradation owing to corrosion of plant during processing in industries increases, the cost of maintaining industrial factory is increasing year by the year. Most of the materials of the facilities are consist of stainless steel (SS) such as austenite SS, ferrite SS, martensite SS, and duplex SS. Among them austenite SS is cheap and has excellent corrosion resistance and heat resistance. Corrosion is the consumption and change of metals by altering chemical and electrical reactions. The types of SS corrosion include pitting corrosion, crevice corrosion, galvanic corrosion, stress corrosion cracking, and thermal corrosion. The corrosion of SS is not only investigated various environmental factors but also the measurement of the corrosion rate. Therefore, it aims to understand comprehensive corrosion rates in various environments using qualitative, quantitative and electrochemical methods.

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

A Study on Characteristics of the Electrochemical Corrosion of Weld Zone for Refrigerating and Heating Systems Pipe (냉난방용 배관 용접부의 전기화학적 부식특성에 관한 연구)

  • Lim, Uh-Joh;Yun, Byoung-Du;Kim, Hwan-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.1
    • /
    • pp.84-90
    • /
    • 2007
  • This paper was studied on the electrochemical corrosion characteristics of weld zone for refrigerating and heating systems pipe. Austenitic stainless steel is widely applied to various fields of industry, because it is good to corrosion resistance and mechanical properties. But STS 304 is reliable to sensitization by heat cycle on welding. Therefore, in this study, electrochemical polarization test of STS 304 steel pipe manufactured by arc welding in tap water was carried out. And then polarization resistance behavior, uniform and local corrosion behaviors of base metal(BM), weld metal(WM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The corrosion current density of STS 304 steel pipe is high in order of BM(153nA/cm2) < WM(614nA/cm2) < HAZ ($1.675{\mu}A/cm2$). The pitting potential of HAZ(238mV/SCE) for STS 304 is lower than BM(1206mV/SCE) and WM(369mV/SCE). Therefore, the local corrosion like pitting corrosion, galvanic corrosion and crevice corrosion of HAZ for STS 304 is more sensitive than BM and WM.

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

Material characteristic of ACSR due to eccentricity at sleeve point (ACSR 슬리브 개소에서의 송전선 재료특성 검토)

  • Kang, J.W.;Hong, D.S.;Jang, T.I.;Yoon, H.H.;Lee, D.I.;Choi, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.309-310
    • /
    • 2006
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines has become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. This paper deals with material characteristic of ACSR due to eccentricity at sleeve point. Test samples are ACSR 240[$mm^2$] conductors, which are real transmission lines. As a result, it is obvious that ACSR due to eccentricity may lead to mechanical deterioration.

  • PDF

Tensile Characteristics of ACSR Overhead Lines located in seaside (해안지역 ACSR 가공지선의 기계적 특성)

  • Jang, T.I.;Kang, J.W.;Lee, D.I.;Jang, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1709-1711
    • /
    • 2001
  • The remaining life of ACSR(Aluminum Conductor Steel Reinforced) wires exposed to the atmosphere for a long period relies on the extent of deterioration caused by environmental factors such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. We investigated the tensile characteristics of ACSR wires in a coastal area through several mechanical tests, and analyzed the constituents of them using SEM(scanning electron microscope). Test samples are parts of ACSR 97[$mm^2$] overhead transmission lines in that area. The result shows that ACSR wires exposed to salt may lead to rapid mechanical deterioration.

  • PDF