• Title/Summary/Keyword: crest height

Search Result 158, Processing Time 0.023 seconds

Note on the appearance of Freak Waves from in-situ ocean wave data

  • Tomita, Hiroshi;Waseda, Takuji
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.105-112
    • /
    • 2006
  • Freak waves in the ocean are recently drawing much attention as a natural disaster to ocean structures and navigating ships as well. Several observation data, among them the Draupner New Year Wave, show the very impressive feature of Freak waves whose wave height is up to three times as high as the significant wave height of surrounding waves, In addition, Freak wave appears as an isolated very high crest in somewhat stationary random waves of same order in their wavelengths. Bearing such characteristics in mind, one notices its extraordinary steepness. This strongly suggests that Freak wave is not long lived but transient nature on the whole. A great number of studies to explain these natures were published from both theoretical and numerical point of view. However it is not sure if they are applicable to actual ocean environment. In this paper, we deal with the results concerning abnormal and/or Freak waves from in-situ ocean wave data and point out several remarks to the problems lain behind the contributions in this context. A physical experiment is described to reinforce the subject discussed from the observation data.

  • PDF

Numerical Study on Wave Run-up of a Circular Cylinder with Various Diffraction Parameters and Body Drafts

  • Jeong, Ho-Jin;Koo, Weoncheol;Kim, Sung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.245-252
    • /
    • 2020
  • Wave run-up is an important phenomenon that should be considered in ocean structure design. In this study, the wave run-up of a surface-piercing circular cylinder was calculated in the time domain using the three-dimensional linear and fully nonlinear numerical wave tank (NWT) techniques. The NWT was based on the boundary element method and the mixed Eulerian and Lagrangian method. Stokes second-order waves were applied to evaluate the effect of the nonlinear waves on wave run-up, and an artificial damping zone was adopted to reduce the amount of reflected and re-reflected waves from the sidewall of the NWT. Parametric studies were conducted to determine the effect of wavelength, wave steepness, and the draft of the cylinder on the wave run-up of the cylinder. The maximum wave run-up value occurred at 0°, which was in front of the cylinder, and the minimum value occurred near the circumferential angle of 135°. As the diffraction parameter increased, the wave run-up increased up to 1.7 times the wave height. Furthermore, the wave run-up was 4% higher than the linear wave when the wave steepness was 1/35. In particular, the crest height of the wave run-up increased by 8%.

Wind Flow over Hilly Terrain (언덕지형을 지나는 유동에 관한 연구)

  • 임희창;김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

The effect of small embankments on wind speeds

  • Quinn, A.D.;Robertson, A.P.;Hoxey, R.P.;Short, J.L.;Burgess, L.R.;Smith, B.W.
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.303-315
    • /
    • 1998
  • Full-scale measurements have been made to determine the increase in wind speed over two exposed embankments, one of $23^{\circ}$ slope and 4.7 m in height, the other of $24^{\circ}$ slope and 7.3 m in height. Measurements were made at heights of 5, 10 and 15 m above the upper edge of each embankment and at the same heights approximately 100 m upwind in the lower-level approach fetch. Despite the modest sizes of the embankments, the maximum recorded increase in mean wind speed was 28% and the minimum was 13%; these increase relate to increases in wind loads on structures erected at the top of the embankments of 64% and 28% respectively. The associated increases in gust speeds are estimated at 33% and 18%, which imply increases in gust loading of 77% and 39% respectively. These experimental results are compared with predictions obtained from a computational fluid dynamics (CFD) analysis, using three high Reynolds number eddy-viscosity models and estimates from the UK wind loading code, BS 6399: Part 2. The CFD results are generally in agreement with the experimental data, although near-ground effects on the embankment crest are poorly reproduced.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

Burial and scour of truncated cones due to long-crested and short-crested nonlinear random waves

  • Myrhaug, Dag;Ong, Muk Chen
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.21-37
    • /
    • 2014
  • This paper provides a practical stochastic method by which the burial and scour depths of truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves presented by Catano-Lopera et al. (2011) for truncated cones are used. An example of calculation is also presented.

Propagation Characteristics of Potential Tsunamis near Ryukyu Islands (유구열도 주변 잠재 지진해일 전파특성)

  • Bae, Jae-Seok;Choi, Jun-Woo;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.451-454
    • /
    • 2008
  • Potential tsunamis which may occur near Ryukyu Islands were simulated. Propagation characteristics of the potential tsunamis over the southwestern sea and the influence of tsunamis on the southwestern coast of Korean Peninsula were analyzed. The shallow water area in the east sea of China and the deep water Okinawa Trough play an important role in wave transformation and propagation of the potential tsunamis. The propagation characteristics of the potential tsunamis generated near Ryukyu Islands can be described as in followings : In the first stage after generation, the tsunamis propagate with high speed both northeastward and southwestward along the Okinawa Trough. As a result the waves are elongated and the tsunami height is significantly reduced. The elongated crest of tsunamis spans the whole distance of the Okinawa Trough and lines up toward the edge of the continental shelf of East China Sea. Then, the tsunamis are propagating towards the southeast coast of China. Thus, the influence of tsunamis on the Korean coasts becomes weak.

  • PDF

Scour around spherical bodies due to long-crested and short-crested nonlinear random waves

  • Myrhaug, Dag;Ong, Muk Chen
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.257-269
    • /
    • 2012
  • This paper provides a practical stochastic method by which the maximum equilibrium scour depth around spherical bodies exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour and self-burial depths by Truelsen et al. (2005). An example calculation is provided.

The Effect of the Axial Plane on Measurement of Available Bone Height for Dental Implant in Computed Tomography of the Mandible (하악의 전산화 단층사진에서 횡단면이 임플랜트를 위한 가용골 높이의 결정에 미치는 영향)

  • Jhin, Min-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.379-388
    • /
    • 2002
  • For the success of dental implant, accurate radiographic evaluation is prerequisite for planning the location of the osseointegrated implants and avoiding injury to vital structures. CT/MPR(computed tomography/multiplanar reformation) shows improved visualization of inferior alveolar canal. In order to obtain cross-sectional images parallel to the teeth, the occlusal plane is used to orientate for the axial plane. If the direction of axial plane is not parallel to the occlusal plane, the reformatted cross-sectional scans will be oblique to the planned fixture direction and will not show the actual dimension of the planned fixture's location. If the available bone height which measured in the cross-sectional view is much greater than the actual available bone height, penetration of canal may occur. The aim of this study is to assess the effect of the axial plane to measurement of available bone height for dental implant in computed tomography of the mandible. 40 patients who had made radiographic stents and had taken CT were selected. The sites that were included in the study were 45 molar regions. In the central panoramic scan, the length from alveolar crest to superior border of inferior alveolar canal(available bone height, ABH) was measured in direction of reformatted cross-sectional plane(uncorrected ABH). Then, length from alveolar crest to superior border of canal was measured in direction of stent(corrected ABH). The angle between uncorrected ABH and corrected ABH was measured. From each ABH, available fixture length was decided by $Br{{\aa}}nemark$ system. The results were following ; the difference between two ABHs was statistically significant in both first and second molar(p< 0.01). The percentage of difference more than 1 mm was 8.7% in first molar and 15.5% in second molar. The percentage of difference more than 2 mm was 2.0% in first molar and 6.6% in second molar. The maximum value of difference was 2.5 mm in first molar and 2.2 mm in second molar. The correlations between difference of 2 ABHs and angle was positive correlations in both first and second molar. The correlation coefficient was 0.534 in first molar and 0.728 in second molar. The second molar has a stronger positive correlation. The percentage of disagreement between 2 fixture lengths from two ABHs was 24.4% in first molar and 28.9% in second molar.