• 제목/요약/키워드: creep flow

검색결과 72건 처리시간 0.021초

A simple creep constitutive model for soft clays based on volumetric strain characteristics

  • Chen, G.;Zhu, J.G.;Chen, Z.;Guo, W.L.
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.615-626
    • /
    • 2022
  • The soft clays are widely distributed, and one of the prominent engineering problems is the creep behavior. In order to predict the creep deformation of soft clays in an easier and more acceptable way, a simple creep constitutive model has been proposed in this paper. Firstly, the triaxial creep test data indicated that, the strain-time (𝜀-t) curve showing in the 𝜀-lgt space can be divided into two lines with different slopes, and the time referring to the demarcation point is named as tEOP. Thereafter, the strain increments occurred after the time tEOP are totally assumed to be the creep components, and the elastic and plastic strains had occurred before tEOP. A hyperbolic equation expressing the relationship between creep volumetric strain, stress and time is proposed, with several triaxial creep test data of soft clays verifying the applicability. Additionally, the creep flow law is suggested to be similar with the plastic flow law of the modified Cam-Clay model, and the proposed volumetric strain equation is used to deduced the scaling factor for creep strains. Therefore, a creep constitutive model is thereby established, and verified by successfully predicting the creep principal strains of triaxial specimens.

극지 빙하유동에 있어서 Polycrystalline Ice의 Creep 변형특성 수치 시뮬레이션 (Creep Deformation Characteristics of Polycrystalline Ice and its Numerical Simulation in the Flow of Polar Glaciers)

  • 최경식
    • 한국해안해양공학회지
    • /
    • 제2권2호
    • /
    • pp.59-66
    • /
    • 1990
  • 극지방의 해양 환경은 낮은 온도와 함께 여러 가지 형태로 존재하는 얼음의 분포에 의해 큰 영향을 받는다. 빙하와 빙산, 해빙 등 빙역학의 기초적인 이해를 위하여 본 연구는 polycrystalline ice의 재료적 특성과 파괴기구 등을 파악하고 극지 방하유동시 관측되는 creep 변경을 기술하기 위한 constitutive 모델을 제시하였다. 빙변형에 관여되는 여러 가지 물리적 변화 중 microcracking에 의한 재료의 손상을 주요인으로 간주하여 파손역학의 이론을 적용한 3차원 수치모델을 개발하였으며 기발표된 실험 결과와 비교하였다. 1축 균일압축을 받는 경우 실험 데이타와 수치모델은 유사한 거동을 보이고 있으며, 빙변형에 있어서 1, 2기 creep의 소성적 변형특성 뿐 아니라 microcracking에 의한3기(tertiary) creep의 특징까지도 잘 기술해 주고 있다.

  • PDF

점탄소성 모델을 이용한 ETFE 막재의 장기 크리프 거동 예측기법 연구 (Prediction Method of Long Term Creep Behavior for ETFE Foil by Using Viscoelastic-Plastic Model)

  • 김재열
    • 한국공간구조학회논문집
    • /
    • 제14권3호
    • /
    • pp.93-100
    • /
    • 2014
  • Ethylene Tetrafluoroethylene (ETFE) has been widely used in long-span buildings because of its light weight and high transparency. This paper studies the short and long term creep behaviour of ETFE foil. A series of short-term creep and recovery tests were performed, in which the residual strain was observed. A long-term creep test of the ETFE foil was also performed over 110 days. A viscoelastic-plastic model was then established to describe the short-term creep and recovery behaviour. The model contains a traditional multi-Kelvin part and an added steady-flow component to represent the viscoelastic and viscoplastic behaviour, respectively. The model successfully fit the data for three stresses and six temperatures. Additionally, time-temperature equivalency was adopted to predict the long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined from the process of shifting creep-curves at six temperatures. The long-term creep behaviours at three temperatures were predicted. Finally, the long-term creep test showed that the short-term creep test at identical temperatures insufficiently predicted additional creep behaviour, and the long-term test verified the horizontal shifting factors derived from the time-temperature equivalency.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

Creep analysis of CFT columns subjected to eccentric compression loads

  • Han, Bing;Wang, Yuan-Feng;Wang, Qian;Zhang, Dian-Jie
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.291-304
    • /
    • 2013
  • By considering the creep characteristics of concrete core under eccentric compression, a creep model of concrete filled steel tubes (CFT) columns under eccentric compressive loads is proposed based on the concrete creep model B3. In this proposed model, a discrete element method is introduced to transform the eccentric loading into axial loading. The validity of the model is verified by comparing the predicting results with the published creep experiments results on CFT specimens under compressive loading, together with the predicting values based on other concrete creep models, such as ACI209, CEB90, GL2000 and elastic continuation and plastic flow theory. By using the proposed model, a parameters study is carried out to analysis the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio, aggregate to cement ratio), steel ratio and eccentricity ratio, on the creep of CFT columns under eccentric compressive loading.

폴리에틸렌옥사이드 수용액의 유변학적 특성 평가 - 크리프 및 크리프 회복 - (Rheological, Characterization of Aqueous Poly(Ethylene Oxide) Solutions - Creep and Creep Recovery -)

  • 장갑식;김태훈;박영훈;송기원
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.175-178
    • /
    • 2001
  • 일반적으로 점탄성 거동을 나타내는 고분자 액체의 전단유동특성(shear flow properties)을 평가하기 위하여 정상전단(steady shear), 동적전단(dynamic shear), 응력완화(stress relaxation) 그리고 크리프(creep) 및 크리프 회복(creep recovery) 실험 등이 활용되고 있다[1], 이때 영전단점도(zero shear viscosity)와 정상상태 회복 컴플라이언스(steady-state recoverable compliance)는 정상상태(steady state)에서 얻어지는 물리량으로, 각 실험방법으로부터 직접적 또는 간접적으로 측정이 가능하다. (중략)

  • PDF

Creep analysis of concrete filled steel tube arch bridges

  • Wang, Y.F.;Han, B.;Du, J.S.;Liu, K.W.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.639-650
    • /
    • 2007
  • Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges with different types are calculated and analyzed with and without the effects of bending moment. As a result, the bending moment has considerable influences on long-term deformations and internal forces of CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment.

$YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도 (Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors)

  • 윤존도;초우예
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

유변학을 이용한 콘크리트 크리프 거동 예측 (A Rheological Approach on the Predicting of Concrete Creep)

  • 권기연;민경환;김율희;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.697-700
    • /
    • 2008
  • 본 논문은 유변학을 이용한 합리적인 크리프 예측 모델의 개발을 목표로 한다. 유변학은 응력에 의해 물질에 변형이 유발되었을 때, 변형과 응력 사이의 관계를 규명하는 학문으로 콘크리트와 같은 다공성의 점탄성 구조체의 변형 규명에 효과적이다. 본 논문에서 제안된 모델은 시간 의존성 여부와 발생 메커니즘에 따라 탄성거동, 장기크리프, 시간 의존적 단기크리프 그리고 시간 독립적 단기크리프로 나뉘며, 이와 같은 현상의 분류는 실제 실험값의 시간 경과에 따른 변형 양상을 근거로 한 것이다. 각 부분의 계수 추정 과정에서는 이론(미세프리스트레스 고체화 이론, Microprestress-solidification theory) 및 설계기준(CEB-FIP MC R99)을 최대한 활용하여 모델의 합리성의 높일 수 있도록 하였으며, 부득이하게 이론적 접근이 어려운 경우에는 제한적으로 수치적 접근을 시도하였다. 끝으로 수립된 모델을 실제 실험 데이터에 적용한 결과를 기존의 기준식 및 이론식의 적용 결과와 비교 평가 하였다.

  • PDF