• Title/Summary/Keyword: creep compliance

Search Result 42, Processing Time 0.033 seconds

Rheological, Characterization of Aqueous Poly(Ethylene Oxide) Solutions - Creep and Creep Recovery - (폴리에틸렌옥사이드 수용액의 유변학적 특성 평가 - 크리프 및 크리프 회복 -)

  • 장갑식;김태훈;박영훈;송기원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.175-178
    • /
    • 2001
  • 일반적으로 점탄성 거동을 나타내는 고분자 액체의 전단유동특성(shear flow properties)을 평가하기 위하여 정상전단(steady shear), 동적전단(dynamic shear), 응력완화(stress relaxation) 그리고 크리프(creep) 및 크리프 회복(creep recovery) 실험 등이 활용되고 있다[1], 이때 영전단점도(zero shear viscosity)와 정상상태 회복 컴플라이언스(steady-state recoverable compliance)는 정상상태(steady state)에서 얻어지는 물리량으로, 각 실험방법으로부터 직접적 또는 간접적으로 측정이 가능하다. (중략)

  • PDF

Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor (PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가)

  • Koo, Gyeong Hoi;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.

A Simplified Method for Creep Analysis of R/C Beams (철근콘크리트 보의 크리이프 단순 해석법)

  • 곽효경;서영재
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.267-280
    • /
    • 1997
  • This paper deals with the development of simplified methods to predict the creep deformation of reinforced concrete beams. The layer approach based on a degenerate kernel of compliance function in form of Dirichlet series is mentioned and a simplified analytical method derived from the equilibrium equations and compatibility conditions is proposed to overcome the sophisticated calculation procedures in the classical creep analysis. Correlation studies between analytical and experimental results and design codes are conducted with the objective to establish the validity of the proposed methods. Besides, various parameter studies are conducted with the objective to identify the effects of cracking, steel ratio and sectional shape in the creep deformation and the obtained results are discussed.

  • PDF

Effect of Dilation on the Mechanical Characterization of Vascular Prostheses

  • Ulcay Y.;Pourdeyhimi B.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • The purpose of this study has been to investigate the effect of dilation on the some mechanical properties of several types of warp-knitted vascular grafts. The structures of warp knit vascular grafts used in the experiments were reverse locknit, locknit, and Tricot. Various mechanical properties of these grafts were determined using devices developed for the purpose. Clinical data obtained were compared with experimental results of warp knit vascular grafts. The most important mechanical properties are found to be creep extension, bursting strengths, and compliance. Preliminary results indicate that vascular grafts are non-compliant and exhibit creep which is predictive of the long term dilation that has been noted in the clinical results. It is found that there is a positive correlation between experimental data and clinical results for at least the grafts tested.

Flexural Creep Model of Recycled-PET Polymer Concrete (재활용 PET 폴리머 콘크리트의 휨 크리프모델)

  • Tae, Ghi-Ho;Jo, Byung-Wan;Park, Jong-Wha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.661-664
    • /
    • 2006
  • As polymer concrete become more widely used by design engineers, it is important that the viscoelastic mechanical behavior of these materials is properly taken into account. Also, an important consideration in the design of polymer concrete is the behavior of creep according to ages of polymer concrete. In this study, flexural creep test was performed on recycled-PET polymer concrete. An method of accelerating the flexural creep tests, called the two-point method, was developed. The two-point method uses the results of three 24-hours creep tests performed at elevated temperatures to develop a Prony series equation that predicts the long-term creep strains at room temperature. The test results demonstrated that two-point method can predict long-term creep strain with sufficient accuracy. The difference between the predicted creep compliance values from those obtained experimentally was less than 5 percent.

  • PDF

Modeling of Anisotropic Creep Behavior of Coated Textile Membranes

  • Yu Woong-Ryeol;Kim Min-Sun;Lee Joon-Seok
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • The present study aims at characterizing and modeling the anisotropic creep behavior of coated textile membrane, a class of flexible textile composites that are used for moderate span enclosures (roofs and air-halls). The objective is to develop a creep model for predicting the lifetime of coated textile membrane. Uniaxial creep tests were conducted on three off-axis coupon specimens to obtain the directional creep compliance. A potential with three parameters is shown to be adequate for modeling the anisotropic creep behavior of coated textile membrane. Furthermore, a possibility of predicting the creep deformation of coated textile membrane in a multi-axial stress state is discussed using the three-parameter potential.

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Behaviors of PSC-Beam Bridges According to Continuity of Spans (1) (PSC-Beam 교량의 연속화에 따른 거동해석 (1))

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.11-20
    • /
    • 1999
  • This paper deals with behaviors of PSC-Beam bridges according to continuity of spans. To analyze the long-term behavior of bridges, an analytical model which can simulate the effects of creep, the shrinkage of concrete, and the cracking of concrete slabs in the negative moment regions is introduced. To consider the different material properties across the sectional depth, the layer approach in which a section is divided into imaginary concrete and steel layers is adopted. The element stiffness matrix is constructed according to the assumed displacement field formulation, and the creep and shrinkage effects of concrete are considered in accordance with the first-order algorithm based on the expansion of the creep compliance. Correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed model. Besides, many uncertainties related to the continuity of spans are analyzed to minimize deck cracking at interior supports.

Effect of Adhesives and Finger Pitches on Bending Creep Performances of Finger-Jointed Woods

  • Park, Han-Min;Oh, Seong-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.57-65
    • /
    • 2005
  • Following our previous reports for finger-jointed woods with various finger profiles studied for the efficient use of small diameter logs and woods containing various defects, twelve types of finger-jointed woods glued with three kinds of adhesives and with two sizes of finger pitches were made with sitka spruce and red pine. The effects of the adhesives and finger pitches on bending creep performances of finger-jointed woods were investigated. The shape of creep curves differed among the used adhesives and finger pitches of finger-jointed woods for both tested species. Their creep curves showed a linear behavior beyond about one hour, and the N values fitted to power law increased with increasing finger pitches. The initial deformation increased with increasing finger pitches, regardless of the tested species and kinds of adhesives, whereas the effect of finger pitches on the creep deformation was not clear. For finger-jointed woods glued with polyvinyl acetate (PVAc) resin, creep failure occurred in 106 hours after the load was applied. And the difference of the creep compliance between finger-jointed woods glued with resorcinol-phenol formaldehyde (RPF) resin and aqueous vinyl urethane (AVU) resin was small. The ratios for creep performances of finger-jointed woods glued with RPF resin and AVU resin versus solid wood were higher in creep deformation than initial deformation for both species, and the difference between both adhesives was not found. The relative creep decreased with increasing finger pitches, and the marked differences was not found between RPF resin and AVU resin.