Effect of Dilation on the Mechanical Characterization of Vascular Prostheses

  • Ulcay Y. (Department of Textile Engineering, College of Engineering & Architecture, University of Uludag) ;
  • Pourdeyhimi B. (Department of Textiles, College of Textiles, North Carolina State University)
  • Published : 2005.03.01

Abstract

The purpose of this study has been to investigate the effect of dilation on the some mechanical properties of several types of warp-knitted vascular grafts. The structures of warp knit vascular grafts used in the experiments were reverse locknit, locknit, and Tricot. Various mechanical properties of these grafts were determined using devices developed for the purpose. Clinical data obtained were compared with experimental results of warp knit vascular grafts. The most important mechanical properties are found to be creep extension, bursting strengths, and compliance. Preliminary results indicate that vascular grafts are non-compliant and exhibit creep which is predictive of the long term dilation that has been noted in the clinical results. It is found that there is a positive correlation between experimental data and clinical results for at least the grafts tested.

Keywords

References

  1. B. Pourdeyhimi and H. D. Wagner, J. Biomed. Mater. Res., 20, 375 (1985) https://doi.org/10.1002/jbm.820200309
  2. B. Pourdeyhimi, J. Biomat. Appl., 2, 163 (1987) https://doi.org/10.1177/088532828700200201
  3. D. B. Nunn, M. H. Freeman, and P. C. Hudgins, Ann. Surg., 189,741 (1979) https://doi.org/10.1097/00000658-197906000-00010
  4. D. B. Nunn, M. M. Carter, M. T. Donohue, and P. C. Hudgins, J. Vas. Surg., 3, 291 (1990)
  5. C. E. Kinley, P. E. Paasche, and A. S. McDonald, Surgery, 75, 28 (1976)
  6. C. E. Kinley and A. E. Marble, J. Cardiovasc. Surgery, 21, 163 (1980)
  7. J. E. Hasson and W. M. Abbott, 'Complications in Vascular Surgery', p.545, Grune & Stratton, 1985
  8. I. G. Kidson and W. M. Abbott, Circulation, 58(3), 12 (1978)
  9. M. Feldstein and B. Pourdeyhimi, Masters' Thesis, University of Maryland, 1986
  10. L. R. Sauvage, K. Berger, P. B. Mansfield, and S. J. Wood, Surg. Clin. N. Am, 54, 213 (1974) https://doi.org/10.1016/S0039-6109(16)40245-8
  11. R. N. Baird and W. M. Abbott, Am. J. Physiol., 233(1), H15 (1977)
  12. R. Walden, G. J. L'Italien, J. Megerman, and W. M. Abbott, Arch. Surg., 115, 1166 (1980) https://doi.org/10.1001/archsurg.1980.01380100018004
  13. J. E. Hasson, J. Megerman, and W. M. Abbott, J. Vase. Surg., 2, 419 (1985) https://doi.org/10.1067/mva.1985.avs0020419
  14. J. E. Hasson, J. Megerman, and W. M. Abbott, J. Vase. Surg., 3, 591 (1986) https://doi.org/10.1067/mva.1986.avs0030591
  15. M. King, P. Blais, and R. Guidion in 'Polyethylene Terephthalate (Dacron) Vascular Prostheses: Material and Fabric Construction Aspects', (D. F. Williams Ed.), pp.190-206, Biocompatibility of Clinical Implant Materials, CRC Press, 1970
  16. B. Pourdeyhirni and J. Moreland, Elastic-Plastic Failure Modelling of Structures with Applications, (Hui D, Kozik TJ), 141, 157 (1988)
  17. B. Pourdeyhimi, J. G. Chiu, and J. Moreland, Winter Annual Meeting of ASME, pp.1O-15, San Francisco, USA, 1989
  18. S. A. Slordahl, H. Piene, J. E. Solbakken, O. Rossvoll, S. O. Samstad, and B. A. Angelsen, Medical & Biological Engineering & Computing, 293 (1990)
  19. B. Pourdeyhimi and Y. Ulcay, Proceedings of the 1992 ESDA, ASME, 6, 107 (1992)