• 제목/요약/키워드: creep behaviour

검색결과 95건 처리시간 0.027초

Al-Zn-Mg 3원계 알루미늄 합금의 크리프 거동 (Creep Behaviour of Al-Zn-Mg Ternary Aluminum Alloy)

  • 윤종호;황경충
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.203-208
    • /
    • 2004
  • To make practical applications of Al-Zn-Mg ternary aluminum alloy effectively in various field, a series of static creep tests under the 16 temperature-stress combination conditions had been performed. The creep tester with constant stress loading was designed and made by the authors and used in this study. The higher the creep temperature rose, the less the stress exponents became. The bigger the applied stresses became, the less values the creep strain activation energy showed. The life prediction constant of Larson-Miller parameter was calculated as about 2.3. In the fractography, the ductile fracture with dimples by intergranular breakage was primarily observed. We can make practical use of these test data in the design, the life prediction and the prevention of the accidents of the thermal facilities, etc.

SUS 316 강의 온도의존성 결정입경이 크리이프 거동에 미치는 영향 (Effect of the grain size of temperature dependence on the creep behavior of SUS 316)

  • 오세욱;강욱
    • Journal of Welding and Joining
    • /
    • 제1권2호
    • /
    • pp.61-68
    • /
    • 1983
  • Austenitic stainless steel has been investigated widely for creep strength of heat resistant material and effects of grain sizes due to various solution treatment time under constant temperature. It was studied that effects of grain sizes subject to solution treatment temperature 1100.deg. C, 1125.deg. C, 1175.deg. C, 1250.deg C, and 1300.deg. C respectively on the creep strength, fracture behaviour and fractography of SUS 316 stainless steel. The experimental results obtained were as follows. 1. The optimum grain size for the maximum creep strength did not vary with creep testing temperatures and stress levels. 2. Among various grain sizes due to different solution treatment temperature, the optimum grain size for the creep strength was found 0.044mm. Also the size showed the minimum initial strain regardless creep temperature. 3. Garofalo's equation of creep rupture life was applied well to SUS 316 stainless steel. 4. The fractography of optimum size was ductile intergranular fracture of dimple type and showed along with the increase of grain size intergranular fracture of w type.

  • PDF

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1998년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

열간정수압압축 시 확산기구 및 Power-law크립기구를 고려한 분말 치밀화거동의 모델링 (Modelling the Densification Behaviour of Powders Considering Diffusion and Power-Law Creep Mechanisms during Hot Isostatic Pressing)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.137-142
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at $1125^{\circ}C$. The results of the calculations were verified using literature data. It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

안산지역 해함점토의 크리프 정수에 관한 연구 (A Study on the Creep Parameters of Ansan Marine Clay)

  • 정형식;안상로
    • 한국지반공학회지:지반
    • /
    • 제9권4호
    • /
    • pp.93-102
    • /
    • 1993
  • 연약 지반위에 축조된 토질 구조물은 제체의 자중으로 인하여 오랜 기간 동안 침하가 계속되는데 이는 시간표존적 거동인 압밀과 크리프(creep)가 동시에 작용하여 발생된다. 본 연구에서는 안산의 해성점토에 대하여 크리프거동 해석에서 필요한 정수를 구하고 수치해석시 중요시되고 있는 구속응력과 응력수준에 따른 크리프정수의 영향 특성에 대하여 연구하였다. 그 결과 탄성계수 E1과 크리프정수 n는 적용응력 수준에 영향을 받는 것으로 나타나 응력수준에 따른 크리프정수 결정식을 제시하였다.

  • PDF

Effect of creep on behaviour of steel structural assemblies in fires

  • Cesarek, Peter;Kramar, Miha;Kolsek, Jerneja
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.423-435
    • /
    • 2018
  • There are presently two general ways of accounting for hazardous metal creep in structural fire analyses: either we incorporate creep strains implicitly in hardening model ('implicit-creep' plasticity) or we account for creep explicitly ('explicit-creep' plasticity). The first approach is simpler and usually used for fast engineering applications, e.g., following proposals of EN 1993-1-2. Prioritizing this approach without consideration of its limitations, however, may lead to significant error. So far the possible levels of such error have been demonstrated by few researchers for individual structural elements (i.e., beams and columns). This paper, however, presents analyses also for selected beam-girder assemblies. Special numerical models are developed correspondingly and they are validated and verified. Their important novelty is that they do not only account for creep in individual members but also for creep in between-member connections. The paper finally shows that outside the declared applicability limits of the implicit-creep plasticity models, the failure times predicted by the applied alternative explicit-creep models can be as much as 40% shorter. Within the limits, however, the discrepancies might be negligible for majority of cases with the exception of about 20% discrepancies found in one analysed example.

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2041-2046
    • /
    • 2020
  • The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

오스테나이트계 25Cr-20Ni 스테인리스강의 고온 예변형에 의한 크리프 거동 (Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels)

  • 박인덕;남기우;안석환
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.59-64
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strained specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steen which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석 (A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite)

  • 송명훈;권훈;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF