• Title/Summary/Keyword: creative problem solving in science

Search Result 273, Processing Time 0.024 seconds

Analysis of the Effectiveness of Liberal SW Education focused on Developing Computational Thinking and Creative Problem Solving Ability (컴퓨팅사고력, 창의적 문제해결력 신장을 위한 대학 교양 SW 기초 교육의 효과 분석)

  • Jiyae Noh
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • In liberal SW education, nurturing student with creative problem-solving ability based on SW is considered important. The purpose of this study is to design SW education and to investigate the effects on students' computational thinking and creative problem solving abilities. This study designed classes in accordance with convergent project and the CT-CPS model and 38 undergraduate students have participated this study. The questionnaire survey was given to students and analyzed the effectiveness of class. The results of this study were as follows: Fitst, SW education significantly improved computational thinking and creative problem solving ability. Second, computational thinking improve significantly in high and low initial score group and creative problem solving improve significantly in low initial score group. However, creative problem solving ability did not improve significantly in high initial score group. Third, computational thinking improve significantly in all majors and creative problem solving improve significantly in college of natural science. However, creative problem solving ability did not improve significantly in college of humanities and social science. In examining the effects on students' computational thinking and creative problem-solving abilities and verify differences by pre-test and major, this study provides significance in expanding the understanding about the nature liberal SW education.

The development of an Instrument for Measuring the Creative Engineering Problems Solving Propensity for STEAM (융합인재교육(STEAM)을 위한 창의적 공학문제해결 성향 검사 도구 개발)

  • Kang, Ju-Won;Nam, Younkyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.3
    • /
    • pp.276-291
    • /
    • 2016
  • This study is to develop a valid and reliable instrument for measuring students' creative engineering problem solving propensity. The creative engineering problem solving is operationally defined in this study as a creative problem solving skill in an engineering context. To develop the instrument, first we define seven common constructs between engineering problem solving skill and creative problem solving skill through an intensive literature review; motivation, context, personal character, engineering design, engienering habits of mind, understandings of engineering and engineers, communication skill, and collaboration skill. Based on the seven constructs and the face validity test conducted by two in-service science teachers and 4 experts in science education research, 40 preliminary items were developed. Then the preliminary instrument was implemented in a science gifted highschool to measure the reliability of the instrument. From the 40 items, 34 items were selected through the initial reliability test by Cronbach's ${\alpha}$(>.75). Finally through the three times of factor analysis process, 28 items in five construct categories were selected; motivation (3 items), engineering design (6 items), engineering habits of mind (9 items), understandings of engineering and engineers (4 items), communication and collaboration skill (6 items). The factor analysis result showed that the reliability of each construct category was between .733 to .892., meaning that the instrument is reliable in terms of the higher structural validity (each item is categorized in an appropriate construct category). We expect that the creative engineering problem solving propensity instrument developed in this study can be used in various contexts for STEAM education research as a reliable and valid instrument.

The Effects of PEOE-Based Class on Learners' Long- and Short-Term Retention and Affective Area (PEOE 수업모형을 적용한 수업이 학습자의 장·단기 파지 및 정의적 영역에 미치는 효과)

  • Choi, Sung-Bong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.878-890
    • /
    • 2013
  • The purpose of this study is to apply the PEOE class model that can enhance students' scientific creative problem-solving ability and self-directed learning ability in the middle school science subject and analyze the effects of it on students' long- and short-term retention, scientific creative problem-solving ability, and self-directed learning characteristics. And the paper has gained the following results: First, according to the result of analysis through the pre-test, post-test, and delay test to examine the effects of PEOE-based class on learners' long- and short-term retention, it is found to be statistically significant in the significant level of .05. In other words, the class using PEOE influences learners' short-term retention significantly, but it is even more effective in transmitting the concept that students acquire into their long-term memory. Second, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' scientific creative problem-solving ability, it is found to be statistically significant in the significant level of .05 in general. However, 'elaboration' and 'originality', the subfactors of scientific creative problem-solving ability, do not indicate significant effects. Third, according to the result of analysis through the pre-test and post-test to examine the effects of PEOE-based class on learners' self-directed learning characteristics, it is found to be statistically significant in the significant level of .05 as a whole. However, 'openness' and 'future-oriented self-understanding', the subfactors of self-directed learning characteristics, do not exert significant effects. Based on the above study results, it can be concluded that PEOE-based class is more effective for learners' academic achievement in science, scientific creative problem-solving ability, and self-directed learning characteristics than lecture-method instruction regarding the middle school science unit of 'The Properties of Air and Weather Change'.

Effects of an Action Learning based Creative Problem-Solving Course for Nursing Students (액션러닝 교수설계에 의한 창의적 문제해결 교과의 학습성과)

  • Jang, Keum Seong;Kim, Nam Young;Park, Hyunyoung
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.20 no.5
    • /
    • pp.587-598
    • /
    • 2014
  • Purpose:This study was conducted to identify the effects of an action learning based creative problem-solving (CPS) course on problem solving, creativity and team-member exchange in nursing students. Methods: A quasi-experimental study applying a non-equivalent control group pre-post design was employed. Sophomore nursing students (32 in the experimental group and 33 in the control group) were recruited from a university in G-city, Korea. Problem solving, creativity and team-member exchange were measured for the pretest and posttest using self-report questionnaires. Kolmogorov-Smirnov test, Chi-square, Fisher's exact test, t-test, and ANCOVA with SPSS/Win 20.0 program were used to analyze the data. Results: The scores for problem solving, creativity and team-member exchange in the experimental group were significantly higher than those of the control group. Conclusion: Results of this study indicate that an action learning based CPS course is an effective teaching method to improve nursing students' competencies. In the future longitudinal studies are needed to assess the long term effects of the course.

Robot education content of infant for creative problem solving in tablet pc (태블릿PC에서 창의적 문제해결력 신장을 위한 유아로봇교육콘텐츠 연구)

  • Park, Young-Suk;Park, Dea-Woo;Shin, Jae-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.446-450
    • /
    • 2012
  • Will lead the future of life in society, children needs robot education for adaptation to the futhure high-tech robot age. For children to learn about robots needs an active interest, the necessity of learning, creative learning using information technology in information-based society In ministry of education, science and technology education in the necessity of a infant's smart robot education to promote education and training child care for infants national scientific and mathematical problem - solving skills and creative problem solving to increase rearing children in desperate need of robots is the development of educational content. Baby robot training content design and creativity of the teaching model effective problem solving and creativity measuring plan review, implementation strategies and creative problem solving is a comparison. The goal of this paper enjoys science and technology with curriculum-based children's fusion science and technology human resources is to lay the groundwork for.

  • PDF

Development of an Algorithm-Based Learning Content for Improve in Creative Problem-Solving Abilities (창의적 문제해결능력 신장을 위한 알고리즘 기반 학습 콘텐츠 개발)

  • Kim, Eun-Gil;Hyun, Dong-Lim;Kim, Jong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Education is focused on how to nurture creative problem-solving skills talent in rapidly changing information society. The algorithm education of computer science is effective in improvement of students' logical thinking and problem solving capability. However, the algorithm education is very difficult to teach in elementary students level. Because it is difficult to understand abstract characteristic of algorithm. Therefore we developed educational contents based on the principle of the algorithm for improve students' logical thinking and problem-solving capability in this study. And educational contents contain interesting elements of the game. So, students will be interested in algorithm learning and participate actively through developed educational contents. Furthermore, students' creative problem-solving capability may improve through algorithm learning.

Development of Teaching Strategy Using Inter-Disciplinary Analogy to Enhance Students' Creative Problem Solving Skills and Examination of Its Effectiveness (II) (학문 통합적 비유를 활용한 창의적 문제 해결력 지향 대학교 화학 실험 수업 전략의 개발 및 효과 (제II보))

  • Bang, Dam-I;Kang, Soon-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.857-874
    • /
    • 2011
  • The purposes of this study were to develop teaching strategy enhancing creative problem solving skills and to examine the instructional influences on studints' creative thinking skills, critical thinking skills, creative personality and academic self-regulation. In this study, a model using inter-disciplinary analogies(PDCA model) was designed and applied to the existing 'Teaching model for the enhancement of the creative problem solving skills'. And it was implemented to preservice science teachers for the one semester. Results indicated that the experimental group presented statistically meaningful improvement in creative thinking skills, especially in the originality of identifying a problem, making hypothesis, and controlling variables (p<.05). In addition, the strategy contributed to improving critical thinking skills, especially in inquiry process of recognizing problems, making hypothesis, interpreting and transforming of data (p<.05). This strategy also helped students' academic self-regulation (p<.05). But there was no significant improvement in creative personality(p<.05).

Analysis of Creative Science Problem Solving Process of Elementary School Students (초등학생의 창의적 과학문제해결과정 분석)

  • Lee, Seul-Gi;Shin, Won-Sub;Lim, Chae-Sung
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.395-405
    • /
    • 2019
  • The purpose of this study is to analyze the process of creative science problem solving (CSPS) in elementary school students. To do this, 6 graders (n=9) at a elementary school in Seoul were participated. In this study, fixed eye-tracker with 250 Hz sampling and observation camera were used. The results of this study, the students with higher ability to solve creative science problems had a slower saccade, and had more visual attention on core clues and a greater number of eye changes. Therefore, students with higher ability to solve creative science problems showed more effective eye movement and faster information processing to solve problems. The CSPS types of elementary students were classified as 'declarative knowledge type', 'procedural knowledge type', 'conditional knowledge type', 'knowledge lack type'. Because each type appears to be complementary, CSPS process for elementary students who have integrated the four types was devised. The results of this study can be used as basic data for understanding elementary school students' CSPS and will help to develop and guide creative science teaching and learning programs useful to elementary school students and science gifted students.

Effect of Learning a Divide-and-conquer Algorithm on Creative Problem Solving (분할 정복 알고리즘 학습이 창의적 문제 해결에 미치는 효과)

  • Kim, Yoon Young;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.2
    • /
    • pp.9-18
    • /
    • 2013
  • In secondary education, learning a computer science subject has the purpose to improve creative problem solving ability of students by learning computational thinking and principles. In particular, learning algorithm has been emphasized for this purpose. There are studies that learning algorithm has the effect of creative problem solving based on the leading studies that learning algorithm has the effect of problem solving. However, relatively the importance of the learning algorithm can weaken, because these studies depend on creative problem solving model or special contents for creativity. So this study proves that learning algorithm has the effect of creative problem solving in the view that common problem solving and creative problem solving have the same process. For this, analogical reasoning was selected among common thinking skills and divide-and-conquer algorithm was selected among abstractive principles for analogical reasoning in sorting algorithm. The frequency which solves the search problem by using the binary search algorithm was higher than the control group learning only sequence of sorting algorithm about the experimental group learning divide-and-conquer algorithm. This result means that learning algorithm including abstractive principle like divide-and-conquer has the effect of creative problem solving by analogical reasoning.

  • PDF

The Effect of Scratch Programming Education for Middle School Students on the Information Science Creative Personality and Technological Problem Solving Tendency (스크래치 프로그래밍 교육이 중학생의 정보과학 창의적 성향과 기술적 문제해결 성향에 미치는 영향)

  • Kim, Ki-Yeol
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.119-133
    • /
    • 2016
  • This study is aimed at verifying the effect of scratch programming education for middle school students on their information science creative personality and technological problem solving tendency. The results of such study can be used as basic data for raising 'future creative talents' armed with problem-solving capability they honed in software education. The results of this research are as follows. First, a statistically significant difference was confirmed between ex ante and ex post samples in a t-test which was performed to verify information science creative personality of the middle school students (t(37)=4.305, p<.01). Their information science creative personality was high in the average score as it dropped from 3.00 in the ex-ante test to 2.51 in the ex post test. It was confirmed that the education of scratch programming influences information science creative personality for middle school students positively, suggesting that middle school students are interested in new problematic situations they found in information science and discover new problem-solving methods in the programming education, thereby showing positive feedback in the education performance. However, it was revealed that the middle school students were unable to immerse themselves in the scratch programming course completely and change their psychological states. Second, a statistically significant difference was confirmed between ex ante and ex post samples in a t-test which was performed to verify their technological problem solving tendency (t(37)=3.074, p<.01). Their technological problem solving tendency was high in the average score as it dropped from 4.06 in the ex-ante test to 3.55 in the ex post test. It was confirmed that the education of scratch programming influences technological problem solving tendency for middle school students positively: they understood problems associated with technology, explored diverse breakthroughs for the identified problems and assessed and improved resolutions. Third, a moderate correlation was confirmed between their information science creative personality and technological problem solving tendency (r=.343, p<.05). Therefore, it is judged that the middle school students who took scratch programming education demonstrated its influence in the correlation between the imagination for problem solving, positivity in the information science creative personality and the confidence for problem solving in the technological problem solving tendency.