• Title/Summary/Keyword: crater

Search Result 259, Processing Time 0.024 seconds

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

Surface exposure age of (25143) Itokawa estimated from the number of mottles on the boulder

  • Jin, Sunho;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.2-46
    • /
    • 2020
  • Various processes, such as space weathering and granular convection, are occurring on asteroids' surfaces. Estimation of the surface exposure timescale is essential for understanding these processes. The Hayabusa mission target asteroid, (25143) Itokawa (Sq-type) is the only asteroid whose age is estimated from remote sensing observations as well as sample analyses in laboratories. There is, however, an unignorable discrepancy between the timescale derived from these different techniques. The ages estimated based on the solar flare track density and the weathered rim thickness of regolith samples range between 102 and 104 years [1][2]. On the contrary, the ages estimated from the crater size distributions and the spectra cover from 106 to 107 years [3][4]. It is important to notice that there is a common drawback of both age estimation methods. Since the evidence of regolith migration is found on the surface of Itokawa [5], the surficial particles would be rejuvenated by granular convection. At the same time, it is expected that the erasure of craters by regolith migration would affect the crater size distribution. We propose a new technique to estimate surface exposure age, focusing on the bright mottles on the large boulders. Our technique is less prone to the granular convection. These mottles are expected to be formed by impacts of mm to cm-sized interplanetary particles. Together with the well-known flux model of interplanetary dust particles (e.g., Grün, 1985 [6]), we have investigated the timescale to form such mottles before they become dark materials again by the space weathering. In this work, we used three AMICA (Asteroid Multi-band Imaging Camera) v-band images. These images were taken on 2005 November 12 during the close approach to the asteroid. As a result, we found the surface exposure timescales of these boulders are an order of 106 years. In this meeting, we will introduce our data analysis technique and evaluate the consistency among previous research for a better understanding of the evolution of this near-Earth asteroid.

  • PDF

Volcanic landforms in Korea (한국의 화산지형 연구)

  • Kim, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.79-96
    • /
    • 2011
  • Volcanic landforms are classified into the volcanic edifice produced through constructive processes of eruption and the crater generated by destructive processes of eruption. Both landforms are distributed around Korean Peninsula including attaching islands. However, only a few regions such as Mt. Baekdu, Jeju Island, Ulleung Island, and Chugaryeong, which are closely related with the volcanic eruption occurred during the Quaternary, could be considered as a volcanic landform. It results in categorizing the volcanic landform as an unusual topography in Korea. The study of Korean researchers on the volcanic landform were regularized in 1970s on Jeju Island, in 1980s on Ulleung Island, and in 1990s on Mt. Baekdu, respectively. Oreums and lava tubes in Jeju Island have been also examined since 1980s. Compared with other fields of geomorphology, researches as well as researchers on the volcanic landform are very few in Korea. Geomorphologists are expected to perform an active research in that the volcanic landform of Korea have diverse values.

Transition of Femtosecond Laser Ablation Mechanism for Sodalime Glass Caused by Photoinduced Defects

  • Jeoung, Sae-Chae;Choi, Jun-Rye;Park, Myung-Il;Park, Mi-Ra;Choi, Dae-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.150-155
    • /
    • 2003
  • Femtosecond laser ablation mechanism was systematically investigated on sodalime glass in ambient conditions. The ablation crater diameter was measured for varying numbers of laser pulses as for varying well as the laser fluence. The analysis of the results with a one dimensional spatial Gaussian fluence distribution reveals that the inherent ablation mechanism has been altered from a multi-photon process to a single photon excitation due to defect sites that have been accumulated by successive laser pulses. Furthermore, the transition between the two regimes was found to be a function of both the laser fluence and the number of laser shots.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools (초연합금절단공구상에 TiN의 화학증착피막에 관한 연구)

  • 이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

A Study on the Wear of Ceramic Tool in Finish Machining of STD11 Steel (STD11강의 다듬질절삭에 의한 세라믹공구의 마멸에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 1995
  • In this study, Wear of a ceramic cutting tool for hardened STD11 steel was investigated. Under the finish machining condition. DOC notch wear of a ceramic cutting tool was mostly occurred earlier than flank and crater wear were proceeded. The relations of DOC notch wear, which was characteristically produced at the beginning of cutting. to cutting speed, feed, depth of cut, and nose radius of a ceramic cutting tool were examined. Effective approach angle, which is a function of cutting conditions, and boundary area were suggested, and then the influence of those was investigated, The following conclusions were obtained: (1)as cutting speed was increasing. DOC notch wear was decreasing (2) the cutting condition that magnitude of slendermess ratio was made small, was favorable for DOC notch wear, (3) as depth of cut was smaller, the influence of feed on DOC notch wear was also smaller, (4) DOC notch wear was mainly influenced by effective approach angle, but by boundary area in the range of low feed.

  • PDF

A study on the chemically vapor deposited TiC, TiN, and Ti(C, N) on $Si_3N_4$-TiC ceramic tools ($Si_3N_4$-TiC ceamic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구)

  • 김동원;김시범;이준근;천성순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.06a
    • /
    • pp.39-42
    • /
    • 1988
  • 요업체 절삭공구(ceramic tool)는 공구강이나 초경제품에 비해 고속 절삭 작업이 가능하며 생산성을 높일 수 있기 때문에 최근 주목을 받고 있다. 본 실험에서 모재(substrate)로 사용된 $Si_3N_4$-TiC ceramic은 요업체 공구중에서 파괴인성이 우수하며, 주철이나 초합금을 절삭할 때 우수한 성능을 나타낸다. 그러나 요업체 절삭공구중에서 경도가 낮은 편에 속하며, Fe,Mn,O와 $Si_3N_4$가 화학적 반응을 일으켜서, steel을 절삭할 때 상면 마모(crater wear)가 심하게 발생하기 때문에 우수한 성능을 나타내지 못하고 있는 실정이다. 따라서 이러한 단점을 보완하기 위해 공구의 표면에 보호피막(protective coating)을 입히는 것은 필수적이다. 본 연구에서는 반응변수들이 TiC 및 TiN 증착층의 증착속도, 미세구조, 화학적 조성 및 증착층과 substrate 사이의 interface를 조사하여 각 증착층의 최적증착조건을 규명하고자 한다.

  • PDF