• Title/Summary/Keyword: crash characteristics

Search Result 193, Processing Time 0.027 seconds

Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure (충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석)

  • 신현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

Development of Luxuriousness Models for Automobile Crash Pad based onSubjective and Objective Material Characteristics (사용자 감성과 설계변수 특성에 기반한 자동차 Crash Pad의 고급감 모형 개발)

  • Ban, Sang-U;Yun, Myeong-Hwan;Lee, Cheol;Lee, Ju-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • This study aims to develop luxuriousness models based on both users' subjective feelings and objective material characteristics of automobile crash pad using Kansei engineering approach. Based on the results of literature survey and FGI, 12 Kansei variables describing look-and-feel and touch feel and crash pad design variables were extracted for systematically developing both a conceptual model of luxuriousness and a questionnaire for Kansei evaluation. A total of 41 various crash pad samples and 60 participants(customers: 30, designers: 30) were employed to evaluate the crash pad samples using the questionnaire with 9-point semantic differential scale and 100-point modified magnitude estimate scale. Based on the survey results, luxuriousness models were developed by using regression and quantification I method. In addition, they were compared and contrasted with respect to the relative importance of Kansei variables. Consequently, the developed luxurious model could suggest the preferred combination of material properties of crash pad.

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

Scale Modeling Technique for the Crash Analysis of Railway Vehicle Structure (철도차량 충돌 해석을 위한 축소모델링 기법 연구)

  • 김범진;허승진
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.231-236
    • /
    • 2002
  • Todays, crash safety requirements of the railway vehicle structures become important design criterion according to the increased driving speed and the lightweight construction. Although the crash analysis using computer simulation can be effectively applied to predict the crash performance of the railway vehicles in the early design stage, the optimized design w.r.t the crash safety could be realized by the crash tests with actual prototype vehicles. However, it is very expensive and time-consuming task to perform the crash test of the railway vehicles. As a measure to cope with the problem, in this paper, the scale modeling technique is suggested and experimentally verified to predict the impact energy absorption characteristics of full scale model of aluminum extrusions sub-structures and the high-speed railway vehicle structure.

Family Firms and Stock Price Crash Risk (가족기업과 주가급락위험)

  • Ryu, Hae-Young;Chae, Soo-Joon
    • Asia-Pacific Journal of Business
    • /
    • v.10 no.4
    • /
    • pp.77-86
    • /
    • 2019
  • The purpose of this study is to examine how the characteristics of family firms affect stock price crash risk. Prior studies argued that the opacity of information due to agency problem causes a plunge in stock prices. The governance characteristics of family firms can increase information opacity which leads to crash risk. Therefore, this study verifies whether family firms have a high possibility of stock price crash risk. We use a logistic regression model to test the relationship between family firms and stock price crash risk using listed firms listed on the Korean Stock Exchange during the fiscal years 2011 through 2017. The family firm is defined as the case where the controlling shareholder is the chief executive officer or the registered executive. If the controlling shareholder's share is less than 5%, it is not considered a family business. We found that family firms are more likely to experience a plunge in stock prices. This supports the hypothesis of this study that passive information disclosure behavior and information opacity of family firms increase stock price crash risk.

A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive (전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구)

  • Cho, Hong;Jeoung, Sun-Kyoung;Kim, Byeong-Woo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

Crash Analysis of Railway Vehicle Structure Using Scale Model (축소모형을 이용한 철도차량 충돌 해석 기법 연구)

  • 김범진;허승진
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.54-59
    • /
    • 2002
  • In general, the aluminum extrusions are used to the light construction of the high speed rail vehicle structures. However, the research works ok the crashworthy design of the high speed rail vehicle structures are not published sufficiently because the crash test of high speed rail vehicle structures costs high and is complicated. So, a method that can predict crash characteristics of a large size structure like a high speed tail vehicle should be suggested. In this study, the scale model studies are performed to predict the impact energy absorption characteristics of full scale model. In the first place, we verified the theory of scale law using FE-simulation from the crashworthiness point of view. Secondly, we performed the crush test using scale model, made of aluminum sub structure. As a result, we could predict the crash characteristics using scale model by 10∼20% error.

  • PDF

A Safety Evaluation of Shoulder Rumble Strips on Expressway using Discriminant Analysis (판별분석을 활용한 노면요철포장의 교통사고감소 효과분석)

  • Park, Je Jin;Seo, Im ki;Kang, Dong Yun;Lee, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • In general, the crash reduction effect of the rumble strip is reported to be about 30% in Korea, while it is about 40-60% in the United States. However, the effect is erroneously overestimated because the simple comparison was only made before and after the installation. Accordingly, this study will reassess the crash reduction effect of the rumble strip. The study will also examine the former's geometric characteristics as well as its effect on the causes of the crash. This study analyzed the crash effect while taking into consideration the changes in the horizontal and vertical alignment, including the width of pavement shoulders, using the crash data for two years before and after the installation of the rumble strip. The types of crash caused by the rumble strip were identified using the classification discriminant function. The crash effect on the rumble strip is estimated to be 28.3%, but the pure effect, with the exception of the effect by other elements, was analyzed to be 7.4%. For each expressway design element, the downhill section (2.0-3.0%), the section with less than 3,000 m and more than 10,000 m of the curve radius, and the section with less than 3.0 m of the pavement shoulder width were found to be effective in crash reduction. For each cause of crash, the rumble strip was analyzed to be effective in the reduction of crash caused by "not keeping the safe distance", "sleeping", "negligence in keeping eyes forward", and "excessive handle operation". In particular, the rumble strip was analyzed and seen to be especially effective in preventing crash caused by "not keeping a safe distance," and "sleeping". The installation of the rumble strip was found to be effective in the prevention of crash caused by "not keeping the safe distance" and "sleeping". The results of this study may thus be used in deciding the causes of crash and the installation location of the tailored rumble strip that would be suitable for the geometric characteristics of the roads. This study will also be helpful in the establishment of future traffic safety measures.

Development of an Automobile Black Box for Reconstruction Analysis of Collision Accidents (충돌사고 재구성 해석을 위한 차량 블랙박스의 개발)

  • 이원희;한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • This paper presents design concepts, specifications and performances of a newly developed Black Box, the reconstruction analysis tool with the records, and results of validation tests. The Black Box can detect crash accidents automatically, and record the vehicle's motion and driver's maneuvers during a pre-defined time period before and after the accident. The items of the Black Box included the acceleration, yaw-rate, vehicle speed, engine RPM, braking application, steering and several digital inputs for recording driver's maneuvers. To detect the accident-related-crash, it is important to understand characteristics of the crash signal, which are much different from those of normal driving. Therefore, analytical considerations should be taken in designing pre-filtering circuits and selecting appropriate parameters for identifying crash accidents. And, it is necessary to select proper combination of motion sensors and design proper pre-filtering circuits in order to describe the vehicle's motion. The analysis algorithms were developed and implemented which can perform accurate detection of crash accidents, simulating pre-crash trajectories, and calculating parameters for reconstruction analysis of crash accidents. The developed Black Box was installed on passenger cars and several types of validation tests were conducted. Through the tests, the accuracy of the recorded data and usefulness of the analysis tool for reconstruction have been validated.